Skip to content

Commit db41636

Browse files
plt-amyandreasabel
authored andcommitted
Put indexed data types in the right universe
To fix agda/agda#6654, we've decided that large indices will no longer be allowed by default. There is an infective flag `--large-indices` to bring them back, but none of the uses of large indices in the standard library were essential: to avoid complicated mutually-recursive PRs across repos, I adjusted the levels to check with `--no-large-indices` instead of adding the flag to the modules that used them.
1 parent b2e6385 commit db41636

File tree

3 files changed

+5
-5
lines changed

3 files changed

+5
-5
lines changed

src/Data/Star/Decoration.agda

+1-1
Original file line numberDiff line numberDiff line change
@@ -28,7 +28,7 @@ data NonEmptyEdgePred {ℓ r p : Level} {I : Set ℓ} (T : Rel I r)
2828
-- Decorating an edge with more information.
2929

3030
data DecoratedWith {ℓ r p : Level} {I : Set ℓ} {T : Rel I r} (P : EdgePred p T)
31-
: Rel (NonEmpty (Star T)) p where
31+
: Rel (NonEmpty (Star T)) (ℓ ⊔ r ⊔ p) where
3232
: {i j k} {x : T i j} {xs : Star T j k}
3333
(p : P x) DecoratedWith P (nonEmpty (x ◅ xs)) (nonEmpty xs)
3434

src/Data/Star/Pointer.agda

+1-1
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,7 @@ open import Relation.Binary.Construct.Closure.ReflexiveTransitive
2121

2222
data Pointer {r p q} {T : Rel I r}
2323
(P : EdgePred p T) (Q : EdgePred q T)
24-
: Rel (Maybe (NonEmpty (Star T))) (p ⊔ q) where
24+
: Rel (Maybe (NonEmpty (Star T))) (ℓ ⊔ r ⊔ p ⊔ q) where
2525
step : {i j k} {x : T i j} {xs : Star T j k}
2626
(p : P x) Pointer P Q (just (nonEmpty (x ◅ xs)))
2727
(just (nonEmpty xs))

src/Reflection/Annotated.agda

+3-3
Original file line numberDiff line numberDiff line change
@@ -35,8 +35,8 @@ Annotation : ∀ ℓ → Set (suc ℓ)
3535
Annotation ℓ = {u} ⟦ u ⟧ Set
3636

3737
-- An annotated type is a family over an Annotation and a reflected term.
38-
Typeₐ : Univ Set (suc )
39-
Typeₐ ℓ u = Annotation ℓ ⟦ u ⟧ Set
38+
Typeₐ : Univ Set (suc (suc ℓ))
39+
Typeₐ ℓ u = Annotation ℓ ⟦ u ⟧ Set (suc ℓ)
4040

4141
private
4242
variable
@@ -168,7 +168,7 @@ mutual
168168

169169
-- An annotation function computes the top-level annotation given a
170170
-- term annotated at all sub-terms.
171-
AnnotationFun : Annotation ℓ Set
171+
AnnotationFun : Annotation ℓ Set (suc ℓ)
172172
AnnotationFun Ann = u {t : ⟦ u ⟧} Annotated′ Ann t Ann t
173173

174174

0 commit comments

Comments
 (0)