-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
48 lines (34 loc) · 1.17 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import os
from dotenv import load_dotenv
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
from llama_index.llms.gemini import Gemini
from llama_index.embeddings.gemini import GeminiEmbedding
import sys
# setup env
load_dotenv()
os.environ["GOOGLE_API_KEY"] = os.getenv("GOOGLE_API_KEY")
# Initialize Gemini
llm = Gemini(model="models/gemini-pro")
embed_model = GeminiEmbedding(model_name="models/embedding-001")
# Set the LLM in the global settings
Settings.llm = llm
Settings.embed_model = embed_model
# query engine instance
query_engine = None
# Load data and convert to vector database
def load_data_and_create_vector_base():
global query_engine
docs = SimpleDirectoryReader("data").load_data()
index = VectorStoreIndex.from_documents(docs, show_progress=True)
query_engine = index.as_query_engine()
def test_query():
while True:
query = input("Question (to exit type - exit) : ")
if (query == "exit"):
sys.exit()
else:
response = query_engine.query(query)
print("Answer: ", response)
if __name__ == "__main__":
load_data_and_create_vector_base()
test_query()