-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathuserCamera.py
178 lines (160 loc) · 5.67 KB
/
userCamera.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import numpy as np
import pickle
import cv2
import tkinter as Tk
import gc
def loadDictionary():
pickle_in=open("faces.pickle","rb")
dictionaryofnames=pickle.load(pickle_in)
pickle_in.close()
return dictionaryofnames
def rewriteDictionary():
pickle_out = open("faces.pickle","wb")
pickle.dump(names, pickle_out)
pickle_out.close()
def clearRecords():
global facenumber
global names
global dataf
global labels
pickle_out = open("faces.pickle","wb")
pickle.dump({}, pickle_out)
pickle_out.close()
facenumber=0
names={}
dataf=[]
labels=[]
def loadLists(names):
if(len(names)==0):
return ([],[])
filelist=[]
for i in range(len(names)):
npfname="FACE"+str(i)+'.npy'
tmpobj=np.load(npfname).reshape((20,50*50*3)) #FACE i
filelist.append(tmpobj)
labels=np.zeros((20*len(names),1))
for i in range(len(names)):
for j in range(20):
labels[j+20*i]=float(i)
listoffiles=[]
for i in range(len(names)):
listoffiles.append(filelist[i])
if(len(listoffiles)!=0):
dataf=np.concatenate(listoffiles)
return (dataf,labels)
def recordFaces():
global entry
global facenumber
global names
global dataf
global labels
camera=cv2.VideoCapture('http://192.168.157.223:8080/video')
framecount=0
data=[]
while True:
ret,frame=camera.read()
if ret:
grayframe=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
facecoord=face_cascade.detectMultiScale(grayframe,1.3,5)
for (x,y,width,height) in facecoord:
face_component=frame[y:y+height,x:x+width,:]
faceresized=cv2.resize(face_component,(50,50))
if framecount%10==0 and len(data)<20:
data.append(faceresized)
cv2.rectangle(frame,(x,y),(x+width,y+height),(0,255,255),2)
info="CAPTURING:"+str((len(data)/20.0)*100)+"%"
cv2.putText(frame,info,(0,30),font,1,(0,255,255),1)
framecount+=1
cv2.imshow('FACE_RECOGNITION_FRAME',frame)
if cv2.waitKey(1)==27 or len(data)>=20:
break
else:
print("ERROR WHILE OPENING CAMERA")
camera.release()
cv2.destroyAllWindows()
data=np.asarray(data)
savestr="FACE"+str(facenumber)
np.save(savestr,data)
names[facenumber]=entry.get()
rewriteDictionary()
names=loadDictionary()
facenumber=len(names)
(dataf,labels)=loadLists(names)
def distance(x1,x2):
return np.sqrt(((x1-x2)**2).sum())
def knn(x, train, targets, k=5):
m = train.shape[0]
dist = []
for ix in range(m):
dist.append(distance(x, train[ix]))
dist = np.asarray(dist)
indx = np.argsort(dist)
sorted_labels = labels[indx][:k]
counts = np.unique(sorted_labels, return_counts=True)
return counts[0][np.argmax(counts[1])]
def recogniseFaces():
'''Detects the faces and recognises the faces present'''
global listofrecognised
listofrecognised=[]
if(len(names)==0):
return
camera=cv2.VideoCapture('http://192.168.157.223:8080/video')
while True:
ret,frame=camera.read()
inframe=[]
if ret==True:
grayframe=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
facecoord=face_cascade.detectMultiScale(grayframe,1.3,5)
for (x,y,width,height) in facecoord:
face_component=frame[y:y+height,x:x+width,:]
faceresized=cv2.resize(face_component,(50,50))
lab=knn(faceresized.flatten(),dataf,labels)
Detected_face=names[int(lab)]
pickle2 = open("detection.pickle","wb")
pickle.dump(Detected_face, pickle2)
pickle2.close()
# gc.collect()
if Detected_face not in listofrecognised:
listofrecognised.append(Detected_face)
if Detected_face not in inframe:
cv2.putText(frame,Detected_face,(x,y),font,1,(255,143,121),2)
cv2.rectangle(frame,(x,y),(x+width,y+height),(255,143,121),2)
inframe.append(Detected_face)
cv2.imshow('FACE_RECOGNITION',frame)
if cv2.waitKey(10)==27:
break;
else:
print("ERROR OPENING CAMERA")
camera.release()
cv2.destroyAllWindows()
def saveRecognised():
global listofrecognised
f=open('RecognisedList.txt','w')
f.write('List of people recognised:')
for names in listofrecognised:
f.write('\n'+names)
f.close
listofrecognised=[]
listofrecognised=[]
face_cascade=cv2.CascadeClassifier('./faceCascade.xml')
font=cv2.FONT_HERSHEY_SIMPLEX
names=loadDictionary()
facenumber=len(names)
print(names)
if(facenumber!=0):
(dataf,labels)=loadLists(names)
root=Tk.Tk()
root.title("FACE DETECTION AND RECOGNITION")
label=Tk.Label(text="ENTER THE NAME IN THE ENTRY FIELD BEFORE RECORDING:")
entry=Tk.Entry(root)
record_button=Tk.Button(text="Record Faces",fg="red",command=recordFaces)
detect_button=Tk.Button(text="Recognise Faces",fg="green",command=recogniseFaces)
clear_button=Tk.Button(text="Clear Records",fg="purple",command=clearRecords)
list_button=Tk.Button(text="Save Recognised",fg="blue",command=saveRecognised)
label.grid(row=0)
entry.grid(row=1,columnspan=100)
record_button.grid(row=2,columnspan=100)
detect_button.grid(row=3,columnspan=100)
clear_button.grid(row=4,columnspan=100)
list_button.grid(row=5,columnspan=100)
root.mainloop()