Skip to content

Getting temperature dependent material properties. #2355

Open
@germa89

Description

@germa89

It seems to me that so far this is not possible, but I would like to get some oficial confirmation.

Given the following RST file:

file_tmp_mat.rst.zip

with the following material defined (as given by pymapdl-reader):

{np.int32(1): {
   'EX': np.float64(169000000000.0), 
   'NUXY': np.float64(0.30000000000000004), 
   'ALPX': array(
      [[3.00000000e+02, 4.00000000e+02, 5.00000000e+02, 6.00000000e+02,
        7.00000000e+02, 8.00000000e+02, 9.00000000e+02, 1.00000000e+03,
        1.10000000e+03, 1.20000000e+03, 1.30000000e+03, 1.40000000e+03,
        1.50000000e+03],
       [2.56800000e-06, 5.14400000e-06, 5.13300000e-06, 5.09400000e-06,
        5.05125000e-06, 5.01760000e-06, 4.99350000e-06, 4.98228571e-06,
        4.98112500e-06, 4.98933333e-06, 5.00420000e-06, 5.02690909e-06,
        5.05300000e-06]]
        ), 
   'KXX': array(
      [[ 300. ,  400. ,  500. ,  600. ,  700. ,  800. ,  900. , 1000. ,
        1100. , 1200. , 1300. , 1400. , 1500. ],
       [ 146.4,   98.3,   73.2,   57.5,   49.2,   41.8,   37.6,   34.5,
          31.4,   28.2,   27.2,   26.1,   25.1]]),
   'RSVX': np.float64(0.00042),
   'HF': array(
      [[ 300. ,  500. ,  700. ,  900. , 1100. , 1300. , 1500. ],
       [  17.8,   60. ,   65.6,   68.9,   71.1,   72.6,   73.2]]
       ),
   'PRXY': np.float64(0.30000000000000004)
   }
}

(there are other material properties)

I cannot get the temperature-dependent material properties.

For instance for ALPX, I try:

from ansys.dpf import core as dpf
from ansys.dpf.core import Model

model = Model("file_tmp_mat.rst")

mats = model.metadata.meshed_region.property_field("mat")
mat_prop = dpf.operators.result.mapdl_material_properties()
mat_prop.inputs.materials.connect(mats)

mat_prop.connect(0, ['ALPX'])
mat_prop.inputs.data_sources.connect(model)
prop_field = mat_prop.outputs.properties_value.get_data()
material_id = 0  # Only one material has ALPX
print(prop_field[material_id].data)

which prints:

DPFArray([2.568e-06])

So all the other materials coefficients seems missing.

Full material properties

{np.int32(1): {
   'EX': np.float64(169000000000.0), 
   'NUXY': np.float64(0.30000000000000004), 
   'ALPX': array(
      [[3.00000000e+02, 4.00000000e+02, 5.00000000e+02, 6.00000000e+02,
        7.00000000e+02, 8.00000000e+02, 9.00000000e+02, 1.00000000e+03,
        1.10000000e+03, 1.20000000e+03, 1.30000000e+03, 1.40000000e+03,
        1.50000000e+03],
       [2.56800000e-06, 5.14400000e-06, 5.13300000e-06, 5.09400000e-06,
        5.05125000e-06, 5.01760000e-06, 4.99350000e-06, 4.98228571e-06,
        4.98112500e-06, 4.98933333e-06, 5.00420000e-06, 5.02690909e-06,
        5.05300000e-06]]
        ), 
   'KXX': array(
      [[ 300. ,  400. ,  500. ,  600. ,  700. ,  800. ,  900. , 1000. ,
        1100. , 1200. , 1300. , 1400. , 1500. ],
       [ 146.4,   98.3,   73.2,   57.5,   49.2,   41.8,   37.6,   34.5,
          31.4,   28.2,   27.2,   26.1,   25.1]]),
   'RSVX': np.float64(0.00042),
   'HF': array(
      [[ 300. ,  500. ,  700. ,  900. , 1100. , 1300. , 1500. ],
       [  17.8,   60. ,   65.6,   68.9,   71.1,   72.6,   73.2]]
       ),
   'PRXY': np.float64(0.30000000000000004)
   },
np.int32(2): {
   'HF': array([[ 300. ,  500. ,  700. ,  900. , 1100. , 1300. , 1500. ],
       [  11.2,   37.9,   41.4,   43.4,   44.8,   45.7,   46. ]])
       },
np.int32(3): {
   'HF': array(
      [[ 300. ,  500. ,  700. ,  900. , 1100. , 1300. , 1500. ],
       [  15. ,   50.9,   55.5,   58.2,   60. ,   61.2,   62.7]]
       )
       },
np.int32(4): {
   'HF': array(
      [[ 300. ,  500. ,  700. ,  900. , 1100. , 1300. , 1500. ],
       [  10.3,   35. ,   38.2,   40. ,   41.3,   42.1,   42.5]]
       )
       },
np.int32(5): {
   'HF': array(
      [[ 300. ,  500. ,  700. ,  900. , 1100. , 1300. , 1500. ],
       [  22.4,   69.3,   76.1,   80.5,   83.7,   86. ,   87.5]]
       )
       },
np.int32(6): {
   'HF': array(
      [[ 300. ,  500. ,  700. ,  900. , 1100. , 1300. , 1500. ],
       [  13. ,   39.6,   43.6,   46. ,   47.6,   49. ,   50.1]]
       )
       },
np.int32(7): {
   'HF': array(
      [[ 300. ,  500. ,  700. ,  900. , 1100. , 1300. , 1500. ],
       [  24. ,   73.8,   81. ,   85.7,   89.2,   91.6,   93.2]]
       )
       },
np.int32(8): {
   'HF': array(
      [[ 300.,  500.,  700.,  900., 1100., 1300., 1500.],
       [ 929., 1193., 1397., 1597., 1791., 1982., 2176.]]
       )
       }}

Related conversations:

Metadata

Metadata

Labels

mapdlRelative to the DPF plugin for MAPDLquestionFurther information is requested

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions