forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_static.sh
45 lines (41 loc) Β· 1.1 KB
/
run_static.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
set -x
export PADDLE_WITH_GLOO=0
export FLAGS_call_stack_level=2
export FLAGS_allocator_strategy=naive_best_fit
unset CUDA_VISIBLE_DEVICES
rm -rf *.prototxt
rm -rf core.*
rm -rf start_sharding*
rm -rf main_sharding*
task_name="gpt-mp-sharding"
rm -rf output/$task_name/log
python -u -m paddle.distributed.fleet.launch \
--gpus "4,5,6,7" \
--log_dir "output/$task_name/log" run_pretrain_static.py \
--model_type "gpt" \
--model_name_or_path "gpt2-en" \
--input_dir "./data" \
--output_dir "output/$task_name" \
--max_seq_len 1024 \
--micro_batch_size 8 \
--global_batch_size 16 \
--sharding_degree 2 \
--mp_degree 2 \
--dp_degree 1 \
--pp_degree 1 \
--use_sharding true \
--use_amp true \
--amp_level "O1" \
--use_recompute true \
--max_lr 0.00015 \
--min_lr 0.00001 \
--max_steps 5000 \
--save_steps 1000 \
--decay_steps 320000 \
--weight_decay 0.01\
--warmup_rate 0.01 \
--grad_clip 1.0 \
--logging_freq 1\
--eval_freq 1000 \
--device "gpu"
# Not support pipeline for this version, don't change pp_degree.