forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
141 lines (118 loc) Β· 6.41 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import time
import paddle
import paddle.distributed as dist
from gen_utils import create_data_loader, print_args, select_sum, set_seed
from paddlenlp.datasets import load_dataset
from paddlenlp.transformers import UNIMOLMHeadModel, UNIMOTokenizer
# yapf: disable
def parse_args():
parser = argparse.ArgumentParser(__doc__)
parser.add_argument('--dataset_name', type=str, default='dureader_qg', help='The name of the dataset to load.')
parser.add_argument('--model_name_or_path', type=str, default='unimo-text-1.0', help='The path or shortcut name of the pre-trained model.')
parser.add_argument("--predict_file", type=str, required=False, default=None, help="Predict data path.")
parser.add_argument('--save_dir', type=str, default='./checkpoints', help='The directory where the checkpoints will be saved.')
parser.add_argument('--logging_steps', type=int, default=100, help='Log every X updates steps.')
parser.add_argument('--seed', type=int, default=1, help='Random seed for initialization.')
parser.add_argument('--batch_size', type=int, default=16, help='Batch size per GPU/CPU for training.')
parser.add_argument('--max_seq_len', type=int, default=512, help='The maximum sequence length of training.')
parser.add_argument('--max_target_len', type=int, default=30, help='The maximum target sequence length of training.')
parser.add_argument('--max_title_len', type=int, default=30, help='The maximum title sequence length of training.')
parser.add_argument('--max_dec_len', type=int, default=20, help='The maximum sequence length of decoding.')
parser.add_argument('--min_dec_len', type=int, default=3, help='The minimal sequence length of decoding.')
parser.add_argument('--num_return_sequences', type=int, default=1, help='The numbers of returned sequences for one input in generation.')
parser.add_argument('--decode_strategy', type=str, default='beam_search', help='The decode strategy in generation.')
parser.add_argument('--top_k', type=int, default=0, help='The number of highest probability vocabulary tokens to keep for top-k sampling.')
parser.add_argument('--temperature', type=float, default=1.0, help='The value used to module the next token probabilities.')
parser.add_argument('--top_p', type=float, default=1.0, help='The cumulative probability for top-p sampling.')
parser.add_argument('--num_beams', type=int, default=6, help='The number of beams for beam search.')
parser.add_argument('--length_penalty', type=float, default=1.2, help='The exponential penalty to the sequence length for beam search.')
parser.add_argument('--device', type=str, default='gpu', help='The device to select for training the model.')
parser.add_argument('--output_path', type=str, default='./predict.txt', help='The file path where the infer result will be saved.')
parser.add_argument("--do_predict", action='store_true', help="Whether to eval and predict.")
parser.add_argument("--template", type=int, default=1, help="The template used during training, select from [0, 1, 2, 3, 4].")
args = parser.parse_args()
return args
# yapf: enable
def read_file(file):
with open(file, "r", encoding="utf-8") as f:
for line in f.readlines():
line = line.strip()
if not line:
continue
line = json.loads(line)
yield line
def run(args):
paddle.set_device(args.device)
world_size = dist.get_world_size()
if world_size > 1:
dist.init_parallel_env()
set_seed(args.seed)
model = UNIMOLMHeadModel.from_pretrained(args.model_name_or_path)
tokenizer = UNIMOTokenizer.from_pretrained(args.model_name_or_path)
if world_size > 1:
model = paddle.DataParallel(model)
if args.predict_file:
dev_ds = load_dataset(read_file, file=args.predict_file, lazy=False)
else:
dev_ds = load_dataset(args.dataset_name, splits="dev", data_files=args.predict_file)
dev_ds, dev_data_loader = create_data_loader(dev_ds, tokenizer, args, "test")
if args.do_predict:
model_eval = model._layers if isinstance(model, paddle.DataParallel) else model
prediction(model_eval, dev_data_loader, args, tokenizer)
@paddle.no_grad()
def prediction(model, data_loader, args, tokenizer):
print("\nPred begin...")
model.eval()
pred_ref = []
time_begin = time.time()
total_time = 0.0
start_time = time.time()
for step, inputs in enumerate(data_loader, 1):
input_ids, token_type_ids, position_ids, attention_mask = inputs
ids, scores = model.generate(
input_ids=input_ids,
token_type_ids=token_type_ids,
position_ids=position_ids,
attention_mask=attention_mask,
max_length=args.max_dec_len,
min_length=args.min_dec_len,
decode_strategy=args.decode_strategy,
temperature=args.temperature,
top_k=args.top_k,
top_p=args.top_p,
num_beams=args.num_beams,
length_penalty=args.length_penalty,
num_return_sequences=args.num_return_sequences,
bos_token_id=tokenizer.cls_token_id,
eos_token_id=tokenizer.mask_token_id,
)
total_time += time.time() - start_time
if step % args.logging_steps == 0:
print("step %d - %.3fs/step" % (step, total_time / args.logging_steps))
total_time = 0.0
results = select_sum(ids, scores, tokenizer, args.max_dec_len, args.num_return_sequences)
pred_ref.extend(results)
start_time = time.time()
print("Generation cost time:", time.time() - time_begin)
with open(args.output_path, "w", encoding="utf-8") as fout:
for ref in pred_ref:
fout.write(ref + "\n")
if __name__ == "__main__":
args = parse_args()
print_args(args)
run(args)