forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
281 lines (236 loc) Β· 12.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import os
import time
import paddle
import paddle.distributed as dist
import paddle.nn.functional as F
from gen_utils import create_data_loader, print_args, select_sum, set_seed
from paddle.optimizer import AdamW
from paddlenlp.datasets import load_dataset
from paddlenlp.metrics import BLEU
from paddlenlp.transformers import (
BasicTokenizer,
LinearDecayWithWarmup,
UNIMOLMHeadModel,
UNIMOTokenizer,
)
# yapf: disable
def parse_args():
parser = argparse.ArgumentParser(__doc__)
parser.add_argument('--dataset_name', type=str, default='dureader_qg', help='The name of the dataset to load.')
parser.add_argument('--model_name_or_path', type=str, default='unimo-text-1.0', help='The path or shortcut name of the pre-trained model.')
parser.add_argument("--train_file", type=str, required=False, default=None, help="Train data path.")
parser.add_argument("--predict_file", type=str, required=False, default=None, help="Predict data path.")
parser.add_argument('--save_dir', type=str, default='./checkpoints', help='The directory where the checkpoints will be saved.')
parser.add_argument('--logging_steps', type=int, default=100, help='Log every X updates steps.')
parser.add_argument('--save_steps', type=int, default=1000, help='Save checkpoint every X updates steps.')
parser.add_argument('--seed', type=int, default=1, help='Random seed for initialization.')
parser.add_argument('--batch_size', type=int, default=16, help='Batch size per GPU/CPU for training.')
parser.add_argument('--learning_rate', type=float, default=5e-5, help='The initial learning rate.')
parser.add_argument('--weight_decay', type=float, default=0.01, help='The weight decay for optimizer.')
parser.add_argument('--epochs', type=int, default=3, help='Total number of training epochs to perform.')
parser.add_argument('--warmup_proportion', type=float, default=0.02, help='The number of warmup steps.')
parser.add_argument('--max_grad_norm', type=float, default=1.0, help='The max value of grad norm.')
parser.add_argument('--beta1', type=float, default=0.9, help='beta1')
parser.add_argument('--beta2', type=float, default=0.98, help='beta2')
parser.add_argument('--epsilon', type=float, default=1e-6, help='epsilon')
parser.add_argument('--max_seq_len', type=int, default=512, help='The maximum sequence length of training.')
parser.add_argument('--max_target_len', type=int, default=30, help='The maximum target sequence length of training.')
parser.add_argument('--max_title_len', type=int, default=30, help='The maximum title sequence length of training.')
parser.add_argument('--max_dec_len', type=int, default=20, help='The maximum sequence length of decoding.')
parser.add_argument('--min_dec_len', type=int, default=3, help='The minimal sequence length of decoding.')
parser.add_argument('--num_return_sequences', type=int, default=1, help='The numbers of returned sequences for one input in generation.')
parser.add_argument('--decode_strategy', type=str, default='beam_search', help='The decode strategy in generation.')
parser.add_argument('--top_k', type=int, default=0, help='The number of highest probability vocabulary tokens to keep for top-k sampling.')
parser.add_argument('--temperature', type=float, default=1.0, help='The value used to module the next token probabilities.')
parser.add_argument('--top_p', type=float, default=1.0, help='The cumulative probability for top-p sampling.')
parser.add_argument('--num_beams', type=int, default=6, help='The number of beams for beam search.')
parser.add_argument('--length_penalty', type=float, default=1.2, help='The exponential penalty to the sequence length for beam search.')
parser.add_argument('--device', type=str, default='gpu', help='The device to select for training the model.')
parser.add_argument('--output_path', type=str, default='./predict.txt', help='The file path where the infer result will be saved.')
parser.add_argument("--do_train", action='store_true', help="Whether to train the model.")
parser.add_argument("--do_predict", action='store_true', help="Whether to eval and predict.")
parser.add_argument("--template", type=int, default=1, help="The template used during training, select from [0, 1, 2, 3, 4].")
args = parser.parse_args()
return args
# yapf: enable
def calc_bleu_n(preds, targets, n_size=4):
assert len(preds) == len(targets), (
"The length of pred_responses should be equal to the length of "
"target_responses. But received {} and {}.".format(len(preds), len(targets))
)
bleu = BLEU(n_size=n_size)
tokenizer = BasicTokenizer()
for pred, target in zip(preds, targets):
pred_tokens = tokenizer.tokenize(pred)
target_token = tokenizer.tokenize(target)
bleu.add_inst(pred_tokens, [target_token])
print("\n" + "*" * 15)
print("The auto evaluation result is:")
print("BLEU-" + str(n_size) + ":", bleu.score())
return bleu.score()
def calc_bleu(preds, targets):
calc_bleu_n(preds, targets, 1)
calc_bleu_n(preds, targets, 2)
calc_bleu_n(preds, targets, 3)
bleu4_score = calc_bleu_n(preds, targets, 4)
return bleu4_score
def read_file(file):
with open(file, "r", encoding="utf-8") as f:
for line in f.readlines():
line = line.strip()
if not line:
continue
line = json.loads(line)
yield line
def save_ckpt(model, tokenizer, save_dir, name):
output_dir = os.path.join(save_dir, "model_{}".format(name))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Need better way to get inner model of DataParallel
model_to_save = model._layers if isinstance(model, paddle.DataParallel) else model
model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
def run(args):
paddle.set_device(args.device)
world_size = dist.get_world_size()
if world_size > 1:
dist.init_parallel_env()
set_seed(args.seed)
model = UNIMOLMHeadModel.from_pretrained(args.model_name_or_path)
tokenizer = UNIMOTokenizer.from_pretrained(args.model_name_or_path)
if world_size > 1:
model = paddle.DataParallel(model)
if args.train_file:
train_ds = load_dataset(read_file, file=args.train_file, lazy=False)
else:
train_ds = load_dataset(args.dataset_name, splits="train", data_files=args.train_file)
if args.predict_file:
dev_ds = load_dataset(read_file, file=args.predict_file, lazy=False)
else:
dev_ds = load_dataset(args.dataset_name, splits="dev", data_files=args.predict_file)
train_ds, train_data_loader = create_data_loader(train_ds, tokenizer, args, "train")
dev_ds, dev_data_loader = create_data_loader(dev_ds, tokenizer, args, "test")
if args.do_train:
num_training_steps = args.epochs * len(train_data_loader)
lr_scheduler = LinearDecayWithWarmup(args.learning_rate, num_training_steps, args.warmup_proportion)
# Generate parameter names needed to perform weight decay.
# All bias and LayerNorm parameters are excluded.
decay_params = [p.name for n, p in model.named_parameters() if not any(nd in n for nd in ["bias", "norm"])]
optimizer = AdamW(
learning_rate=lr_scheduler,
parameters=model.parameters(),
weight_decay=args.weight_decay,
beta1=args.beta1,
beta2=args.beta2,
epsilon=args.epsilon,
apply_decay_param_fun=lambda x: x in decay_params,
grad_clip=paddle.nn.ClipGradByGlobalNorm(args.max_grad_norm),
)
step = 0
total_time = 0.0
best_bleu4 = 0
for epoch in range(args.epochs):
print("\nEpoch %d/%d" % (epoch + 1, args.epochs))
batch_start_time = time.time()
for inputs in train_data_loader:
step += 1
labels = inputs[-1]
logits = model(*inputs[:-1])
labels = paddle.nn.functional.one_hot(labels, num_classes=logits.shape[-1])
labels = paddle.nn.functional.label_smooth(labels)
loss = F.cross_entropy(logits, labels, soft_label=True)
loss.backward()
optimizer.step()
lr_scheduler.step()
optimizer.clear_grad()
total_time += time.time() - batch_start_time
if step % args.logging_steps == 0:
ppl = paddle.exp(loss)
print(
"step %d - loss: %.4f - ppl: %.4f - lr: %.7f - %.3fs/step"
% (step, loss, ppl, optimizer.get_lr(), total_time / args.logging_steps)
)
total_time = 0.0
if step % args.save_steps == 0 or step >= num_training_steps:
if dist.get_rank() == 0:
save_ckpt(model, tokenizer, args.save_dir, step)
print("Saved step {} model.\n".format(step))
if args.do_predict:
model_eval = model._layers if isinstance(model, paddle.DataParallel) else model
bleu4 = evaluation(model_eval, dev_data_loader, args, tokenizer)
if bleu4 > best_bleu4:
print("best BLEU-4 performence has been updated: %.5f --> %.5f" % (best_bleu4, bleu4))
best_bleu4 = bleu4
save_ckpt(model, tokenizer, args.save_dir, "best")
batch_start_time = time.time()
print("\nTraining completed.")
elif args.do_predict:
model_eval = model._layers if isinstance(model, paddle.DataParallel) else model
evaluation(model_eval, dev_data_loader, args, tokenizer)
@paddle.no_grad()
def evaluation(model, data_loader, args, tokenizer):
print("\nEval begin...")
model.eval()
pred_ref = []
time_begin = time.time()
total_time = 0.0
start_time = time.time()
for step, inputs in enumerate(data_loader, 1):
input_ids, token_type_ids, position_ids, attention_mask = inputs
ids, scores = model.generate(
input_ids=input_ids,
token_type_ids=token_type_ids,
position_ids=position_ids,
attention_mask=attention_mask,
max_length=args.max_dec_len,
min_length=args.min_dec_len,
decode_strategy=args.decode_strategy,
temperature=args.temperature,
top_k=args.top_k,
top_p=args.top_p,
num_beams=args.num_beams,
length_penalty=args.length_penalty,
num_return_sequences=args.num_return_sequences,
bos_token_id=tokenizer.cls_token_id,
eos_token_id=tokenizer.mask_token_id,
)
total_time += time.time() - start_time
if step % args.logging_steps == 0:
print("step %d - %.3fs/step" % (step, total_time / args.logging_steps))
total_time = 0.0
results = select_sum(ids, scores, tokenizer, args.max_dec_len, args.num_return_sequences)
pred_ref.extend(results)
start_time = time.time()
print("Generation cost time:", time.time() - time_begin)
with open(args.output_path, "w", encoding="utf-8") as fout:
for ref in pred_ref:
fout.write(ref + "\n")
with open(args.output_path + ".reference.txt", "w", encoding="utf-8") as fout:
targets = [example["target"] for example in data_loader.dataset]
for target in targets:
fout.write(target + "\n")
print("\nSave inference result into: %s" % args.output_path)
if "target" in data_loader.dataset[0].keys():
targets = [example["target"] for example in data_loader.dataset]
bleu4_score = calc_bleu(pred_ref, targets)
model.train()
return bleu4_score
if __name__ == "__main__":
args = parse_args()
print_args(args)
run(args)