forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexport_model.py
58 lines (51 loc) Β· 2.49 KB
/
export_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import paddle
import shutil
from paddlenlp.utils.log import logger
from predict import LongDocClassifier
# yapf: disable
parser = argparse.ArgumentParser()
parser.add_argument("--batch_size", default=16, type=int,
help="Batch size per GPU/CPU for predicting (In static mode, it should be the same as in model training process.)")
parser.add_argument("--model_name_or_path", type=str, default="ernie-doc-base-zh",
help="Pretraining or finetuned model name or path")
parser.add_argument("--max_seq_length", type=int, default=512,
help="The maximum total input sequence length after SentencePiece tokenization.")
parser.add_argument("--memory_length", type=int, default=128, help="Length of the retained previous heads.")
parser.add_argument("--device", type=str, default="cpu", choices=["cpu", "gpu"],
help="Select cpu, gpu devices to train model.")
parser.add_argument("--dataset", default="iflytek", choices=["imdb", "iflytek", "thucnews", "hyp"], type=str,
help="The training dataset")
parser.add_argument("--static_path", default=None, type=str,
help="The path which your static model is at or where you want to save after converting.")
args = parser.parse_args()
# yapf: enable
if __name__ == "__main__":
paddle.set_device(args.device)
if os.path.exists(args.model_name_or_path):
logger.info("init checkpoint from %s" % args.model_name_or_path)
if args.static_path and os.path.exists(args.static_path):
logger.info("will remove the old model")
shutil.rmtree(args.static_path)
predictor = LongDocClassifier(
model_name_or_path=args.model_name_or_path,
batch_size=args.batch_size,
max_seq_length=args.max_seq_length,
memory_len=args.memory_length,
static_mode=True,
static_path=args.static_path,
)