forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
88 lines (69 loc) · 3.66 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import paddle
from data_process import convert_example, load_dict
from utils import decode
from paddlenlp.data import Pad, Stack, Tuple
from paddlenlp.transformers import ErnieCtmTokenizer, ErnieCtmWordtagModel
# yapf: disable
parser = argparse.ArgumentParser()
parser.add_argument("--params_path", type=str, default="./output/model_300/model_state.pdparams", required=True, help="The path to model parameters to be loaded.")
parser.add_argument("--data_dir", type=str, default="./data", help="The input data dir, should contain name_category_map.json.")
parser.add_argument("--max_seq_len", type=int, default=64, help="The maximum total input sequence length after tokenization. Sequences longer than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--batch_size", type=int, default=32, help="Batch size per GPU/CPU for training.")
parser.add_argument('--device', type=str, choices=['cpu', 'gpu'], default="gpu", help="Select which device to train model, defaults to gpu.")
args = parser.parse_args()
# yapf: enable
def do_predict(data, model, tokenizer, viterbi_decoder, tags_to_idx, idx_to_tags, batch_size=1, summary_num=2):
examples = []
for text in data:
example = {"tokens": list(text)}
input_ids, token_type_ids, seq_len = convert_example(example, tokenizer, args.max_seq_len, is_test=True)
examples.append((input_ids, token_type_ids, seq_len))
batches = [examples[idx : idx + batch_size] for idx in range(0, len(examples), batch_size)]
batchify_fn = lambda samples, fn=Tuple( # noqa: E731
Pad(axis=0, pad_val=tokenizer.pad_token_id, dtype="int64"), # input_ids
Pad(axis=0, pad_val=tokenizer.pad_token_type_id, dtype="int64"), # token_type_ids
Stack(dtype="int64"), # seq_len
): fn(samples)
all_pred_tags = []
model.eval()
for batch in batches:
input_ids, token_type_ids, seq_len = batchify_fn(batch)
input_ids = paddle.to_tensor(input_ids)
token_type_ids = paddle.to_tensor(token_type_ids)
seq_len = paddle.to_tensor(seq_len)
pred_tags = model(input_ids, token_type_ids, lengths=seq_len)[0]
all_pred_tags.extend(pred_tags.numpy().tolist())
results = decode(data, all_pred_tags, summary_num, idx_to_tags)
return results
if __name__ == "__main__":
paddle.set_device(args.device)
data = [
"美人鱼是周星驰执导的一部电影",
]
tags_to_idx = load_dict(os.path.join(args.data_dir, "tags.txt"))
idx_to_tags = dict(zip(*(tags_to_idx.values(), tags_to_idx.keys())))
model = ErnieCtmWordtagModel.from_pretrained("wordtag", num_tag=len(tags_to_idx))
tokenizer = ErnieCtmTokenizer.from_pretrained("wordtag")
if args.params_path and os.path.isfile(args.params_path):
state_dict = paddle.load(args.params_path)
model.set_dict(state_dict)
print("Loaded parameters from %s" % args.params_path)
results = do_predict(
data, model, tokenizer, model.viterbi_decoder, tags_to_idx, idx_to_tags, batch_size=args.batch_size
)
print(results)