forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
203 lines (163 loc) Β· 8.27 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import random
import time
from functools import partial
import numpy as np
import paddle
from data_process import convert_example, create_dataloader, load_dict, read_custom_data
from metric import SequenceAccuracy
from paddlenlp.data import Pad, Stack, Tuple
from paddlenlp.datasets import load_dataset
from paddlenlp.transformers import (
ErnieCtmTokenizer,
ErnieCtmWordtagModel,
LinearDecayWithWarmup,
)
from paddlenlp.utils.log import logger
def parse_args():
parser = argparse.ArgumentParser()
# yapf: disable
parser.add_argument("--data_dir", default="./data", type=str, help="The input data dir, should contain train.json.")
parser.add_argument("--init_from_ckpt", default=None, type=str, help="The path of checkpoint to be loaded.")
parser.add_argument("--output_dir", default="./output", type=str, help="The output directory where the model predictions and checkpoints will be written.",)
parser.add_argument("--max_seq_len", default=128, type=int, help="The maximum total input sequence length after tokenization. Sequences longer than this will be truncated, sequences shorter will be padded.", )
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument("--num_train_epochs", default=3, type=int, help="Total number of training epochs to perform.", )
parser.add_argument("--logging_steps", type=int, default=5, help="Log every X updates steps.")
parser.add_argument("--save_steps", type=int, default=100, help="Save checkpoint every X updates steps.")
parser.add_argument("--batch_size", default=32, type=int, help="Batch size per GPU/CPU for training.", )
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps. If > 0: Override warmup_proportion")
parser.add_argument("--warmup_proportion", default=0.0, type=float, help="Linear warmup proportion over total steps.")
parser.add_argument("--adam_epsilon", default=1e-6, type=float, help="Epsilon for Adam optimizer.")
parser.add_argument("--seed", default=1000, type=int, help="random seed for initialization")
parser.add_argument("--device", default="gpu", type=str, help="The device to select to train the model, is must be cpu/gpu/xpu.")
# yapf: enable
args = parser.parse_args()
return args
def set_seed(seed):
"""sets random seed"""
random.seed(seed)
np.random.seed(seed)
paddle.seed(seed)
@paddle.no_grad()
def evaluate(model, metric, data_loader, tags, tags_to_idx):
model.eval()
metric.reset()
losses = []
for batch in data_loader():
input_ids, token_type_ids, seq_len, tags = batch
loss, seq_logits = model(input_ids, token_type_ids, lengths=seq_len, tag_labels=tags)[:2]
loss = loss.mean()
losses.append(loss.numpy())
correct = metric.compute(
pred=seq_logits.reshape([-1, len(tags_to_idx)]), label=tags.reshape([-1]), ignore_index=tags_to_idx["O"]
)
metric.update(correct)
acc = metric.accumulate()
logger.info("eval loss: %.5f, acc: %.5f" % (np.mean(losses), acc))
model.train()
metric.reset()
def do_train(args):
paddle.set_device(args.device)
rank = paddle.distributed.get_rank()
if paddle.distributed.get_world_size() > 1:
paddle.distributed.init_parallel_env()
set_seed(args.seed)
train_ds = load_dataset(
read_custom_data, filename=os.path.join(args.data_dir, "train.txt"), is_test=False, lazy=False
)
dev_ds = load_dataset(read_custom_data, filename=os.path.join(args.data_dir, "dev.txt"), is_test=False, lazy=False)
tags_to_idx = load_dict(os.path.join(args.data_dir, "tags.txt"))
tokenizer = ErnieCtmTokenizer.from_pretrained("wordtag")
model = ErnieCtmWordtagModel.from_pretrained("wordtag", num_labels=len(tags_to_idx))
trans_func = partial(convert_example, tokenizer=tokenizer, max_seq_len=args.max_seq_len, tags_to_idx=tags_to_idx)
def batchify_fn(samples):
fn = Tuple( # noqa: E731
Pad(axis=0, pad_val=tokenizer.pad_token_id, dtype="int64"), # input_ids
Pad(axis=0, pad_val=tokenizer.pad_token_type_id, dtype="int64"), # token_type_ids
Stack(dtype="int64"), # seq_len
Pad(axis=0, pad_val=tags_to_idx["O"], dtype="int64"), # tags
)
return fn(samples)
train_data_loader = create_dataloader(
train_ds, mode="train", batch_size=args.batch_size, batchify_fn=batchify_fn, trans_fn=trans_func
)
dev_data_loader = create_dataloader(
dev_ds, mode="dev", batch_size=args.batch_size, batchify_fn=batchify_fn, trans_fn=trans_func
)
if args.init_from_ckpt and os.path.isfile(args.init_from_ckpt):
state_dict = paddle.load(args.init_from_ckpt)
model.set_dict(state_dict)
if paddle.distributed.get_world_size() > 1:
model = paddle.DataParallel(model)
num_training_steps = len(train_data_loader) * args.num_train_epochs
warmup = args.warmup_steps if args.warmup_steps > 0 else args.warmup_proportion
lr_scheduler = LinearDecayWithWarmup(args.learning_rate, num_training_steps, warmup)
decay_params = [p.name for n, p in model.named_parameters() if not any(nd in n for nd in ["bias", "norm"])]
optimizer = paddle.optimizer.AdamW(
learning_rate=lr_scheduler,
epsilon=args.adam_epsilon,
parameters=model.parameters(),
weight_decay=args.weight_decay,
apply_decay_param_fun=lambda x: x in decay_params,
)
logger.info("Total steps: %s" % num_training_steps)
logger.info("WarmUp steps: %s" % warmup)
metric = SequenceAccuracy()
total_loss = 0
global_step = 0
for epoch in range(1, args.num_train_epochs + 1):
logger.info(f"Epoch {epoch} beginnig")
start_time = time.time()
for total_step, batch in enumerate(train_data_loader):
global_step += 1
input_ids, token_type_ids, seq_len, tags = batch
loss = model(input_ids, token_type_ids, lengths=seq_len, tag_labels=tags)[0]
loss = loss.mean()
total_loss += loss
loss.backward()
optimizer.step()
optimizer.clear_grad()
lr_scheduler.step()
if global_step % args.logging_steps == 0 and rank == 0:
end_time = time.time()
speed = float(args.logging_steps) / (end_time - start_time)
logger.info(
"global step %d, epoch: %d, loss: %.5f, speed: %.2f step/s"
% (global_step, epoch, total_loss / args.logging_steps, speed)
)
start_time = time.time()
total_loss = 0
if (global_step % args.save_steps == 0 or global_step == num_training_steps) and rank == 0:
output_dir = os.path.join(args.output_dir, "model_%d" % (global_step))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model._layers if isinstance(model, paddle.DataParallel) else model
model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
evaluate(model, metric, dev_data_loader, tags, tags_to_idx)
def print_arguments(args):
"""print arguments"""
print("----------- Configuration Arguments -----------")
for arg, value in sorted(vars(args).items()):
print("%s: %s" % (arg, value))
print("------------------------------------------------")
if __name__ == "__main__":
args = parse_args()
print_arguments(args)
do_train(args)