forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_pretrain.py
464 lines (412 loc) Β· 18.3 KB
/
run_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
import os
import random
import sys
import time
from concurrent.futures import ThreadPoolExecutor
import h5py
import numpy as np
import paddle
from paddle.io import DataLoader, Dataset
from paddlenlp.data import Stack
from paddlenlp.trainer.argparser import strtobool
from paddlenlp.transformers import (
BertForPretraining,
BertModel,
BertPretrainingCriterion,
BertTokenizer,
ErnieForPretraining,
ErnieModel,
ErniePretrainingCriterion,
ErnieTokenizer,
LinearDecayWithWarmup,
)
from paddlenlp.utils import profiler
from paddlenlp.utils.tools import TimeCostAverage
FORMAT = "%(asctime)s-%(levelname)s: %(message)s"
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)
MODEL_CLASSES = {
"bert": (BertModel, BertForPretraining, BertPretrainingCriterion, BertTokenizer),
"ernie": (ErnieModel, ErnieForPretraining, ErniePretrainingCriterion, ErnieTokenizer),
}
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_type",
default=None,
type=str,
required=True,
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
)
parser.add_argument(
"--model_name_or_path",
default=None,
type=str,
required=True,
help="Path to pre-trained model or shortcut name selected in the list: "
+ ", ".join(
sum([list(classes[-1].pretrained_init_configuration.keys()) for classes in MODEL_CLASSES.values()], [])
),
)
parser.add_argument(
"--input_dir",
default=None,
type=str,
required=True,
help="The input directory where the data will be read from.",
)
parser.add_argument(
"--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--max_predictions_per_seq", default=80, type=int, help="The maximum total of masked tokens in input sequence"
)
parser.add_argument(
"--batch_size",
default=8,
type=int,
help="Batch size per GPU/CPU for training.",
)
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument(
"--max_steps",
default=1000000,
type=int,
help="Set total number of training steps to perform. ",
)
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
parser.add_argument("--logging_steps", type=int, default=500, help="Log every X updates steps.")
parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.")
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")
parser.add_argument(
"--device",
type=str,
default="gpu",
choices=["cpu", "gpu", "xpu", "npu"],
help="Device for selecting for the training.",
)
parser.add_argument("--use_amp", type=strtobool, default=False, help="Enable mixed precision training.")
parser.add_argument(
"--amp_level", type=str, default="O2", choices=["O1", "O2"], help="select O1 or O2 of amp level."
)
parser.add_argument("--scale_loss", type=float, default=2**15, help="The value of scale_loss for fp16.")
parser.add_argument("--to_static", type=strtobool, default=False, help="Enable training under @to_static.")
# For benchmark.
parser.add_argument(
"--profiler_options",
type=str,
default=None,
help='The option of profiler, which should be in format "key1=value1;key2=value2;key3=value3".',
)
parser.add_argument(
"--fuse_transformer",
type=strtobool,
default=False,
help="Whether to use FusedTransformerEncoderLayer to replace a TransformerEncoderLayer or not.",
)
args = parser.parse_args()
return args
def set_seed(args):
random.seed(args.seed + paddle.distributed.get_rank())
np.random.seed(args.seed + paddle.distributed.get_rank())
paddle.seed(args.seed + paddle.distributed.get_rank())
class WorkerInitObj(object):
def __init__(self, seed):
self.seed = seed
def __call__(self, id):
np.random.seed(seed=self.seed + id)
random.seed(self.seed + id)
def create_pretraining_dataset(input_file, max_pred_length, shared_list, args, worker_init):
train_data = PretrainingDataset(input_file=input_file, max_pred_length=max_pred_length)
# files have been sharded, no need to dispatch again
train_batch_sampler = paddle.io.BatchSampler(train_data, batch_size=args.batch_size, shuffle=True)
# DataLoader cannot be pickled because of its place.
# If it can be pickled, use global function instead of lambda and use
# ProcessPoolExecutor instead of ThreadPoolExecutor to prefetch.
def _collate_data(data, stack_fn=Stack()):
num_fields = len(data[0])
out = [None] * num_fields
# input_ids, segment_ids, input_mask, masked_lm_positions,
# masked_lm_labels, next_sentence_labels, mask_token_num
for i in (0, 1, 2, 5):
out[i] = stack_fn([x[i] for x in data])
_, seq_length = out[0].shape
size = sum(len(x[3]) for x in data)
# Padding for divisibility by 8 for fp16 or int8 usage
if size % 8 != 0:
size += 8 - (size % 8)
# masked_lm_positions
# Organize as a 1D tensor for gather or use gather_nd
out[3] = np.full(size, 0, dtype=np.int32)
# masked_lm_labels
out[4] = np.full([size, 1], -1, dtype=np.int64)
mask_token_num = 0
for i, x in enumerate(data):
for j, pos in enumerate(x[3]):
out[3][mask_token_num] = i * seq_length + pos
out[4][mask_token_num] = x[4][j]
mask_token_num += 1
# mask_token_num
out.append(np.asarray([mask_token_num], dtype=np.float32))
return out
train_data_loader = DataLoader(
dataset=train_data,
batch_sampler=train_batch_sampler,
collate_fn=_collate_data,
num_workers=0,
worker_init_fn=worker_init,
return_list=True,
)
return train_data_loader, input_file
def create_input_specs():
input_ids = paddle.static.InputSpec(name="input_ids", shape=[-1, -1], dtype="int64")
segment_ids = paddle.static.InputSpec(name="segment_ids", shape=[-1, -1], dtype="int64")
position_ids = None
input_mask = paddle.static.InputSpec(name="input_mask", shape=[-1, 1, 1, -1], dtype="float32")
masked_lm_positions = paddle.static.InputSpec(name="masked_lm_positions", shape=[-1], dtype="int32")
return [input_ids, segment_ids, position_ids, input_mask, masked_lm_positions]
class PretrainingDataset(Dataset):
def __init__(self, input_file, max_pred_length):
self.input_file = input_file
self.max_pred_length = max_pred_length
f = h5py.File(input_file, "r")
keys = [
"input_ids",
"input_mask",
"segment_ids",
"masked_lm_positions",
"masked_lm_ids",
"next_sentence_labels",
]
self.inputs = [np.asarray(f[key][:]) for key in keys]
f.close()
def __len__(self):
"Denotes the total number of samples"
return len(self.inputs[0])
def __getitem__(self, index):
[input_ids, input_mask, segment_ids, masked_lm_positions, masked_lm_ids, next_sentence_labels] = [
input[index].astype(np.int64) if indice < 5 else np.asarray(input[index].astype(np.int64))
for indice, input in enumerate(self.inputs)
]
# TODO: whether to use reversed mask by changing 1s and 0s to be
# consistent with nv bert
input_mask = (1 - np.reshape(input_mask.astype(np.float32), [1, 1, input_mask.shape[0]])) * -1e9
index = self.max_pred_length
# store number of masked tokens in index
# outputs of torch.nonzero diff with that of numpy.nonzero by zip
padded_mask_indices = (masked_lm_positions == 0).nonzero()[0]
if len(padded_mask_indices) != 0:
index = padded_mask_indices[0].item()
else:
index = self.max_pred_length
# masked_lm_labels = np.full(input_ids.shape, -1, dtype=np.int64)
# masked_lm_labels[masked_lm_positions[:index]] = masked_lm_ids[:index]
masked_lm_labels = masked_lm_ids[:index]
masked_lm_positions = masked_lm_positions[:index]
# softmax_with_cross_entropy enforce last dim size equal 1
masked_lm_labels = np.expand_dims(masked_lm_labels, axis=-1)
next_sentence_labels = np.expand_dims(next_sentence_labels, axis=-1)
return [input_ids, segment_ids, input_mask, masked_lm_positions, masked_lm_labels, next_sentence_labels]
def do_train(args):
paddle.set_device(args.device)
if paddle.distributed.get_world_size() > 1:
paddle.distributed.init_parallel_env()
set_seed(args)
worker_init = WorkerInitObj(args.seed + paddle.distributed.get_rank())
args.model_type = args.model_type.lower()
base_class, model_class, criterion_class, tokenizer_class = MODEL_CLASSES[args.model_type]
tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path)
pretrained_models_list = list(model_class.pretrained_init_configuration.keys())
if args.model_name_or_path in pretrained_models_list:
config = model_class.config_class.from_pretrained(args.model_name_or_path)
config.fuse = args.fuse_transformer
model = model_class(config)
else:
model = model_class.from_pretrained(args.model_name_or_path)
criterion = criterion_class(getattr(model, model_class.base_model_prefix).config.vocab_size)
# decorate @to_static for benchmark, skip it by default.
if args.to_static:
specs = create_input_specs()
model = paddle.jit.to_static(model, input_spec=specs)
logger.info("Successfully to apply @to_static with specs: {}".format(specs))
# If use default last_epoch, lr of the first iteration is 0.
# Use `last_epoch = 0` to be consistent with nv bert.
num_training_steps = args.max_steps
lr_scheduler = LinearDecayWithWarmup(args.learning_rate, num_training_steps, args.warmup_steps, last_epoch=0)
# Generate parameter names needed to perform weight decay.
# All bias and LayerNorm parameters are excluded.
decay_params = [p.name for n, p in model.named_parameters() if not any(nd in n for nd in ["bias", "norm"])]
optimizer = paddle.optimizer.AdamW(
learning_rate=lr_scheduler,
epsilon=args.adam_epsilon,
parameters=model.parameters(),
weight_decay=args.weight_decay,
apply_decay_param_fun=lambda x: x in decay_params,
)
if args.use_amp:
scaler = paddle.amp.GradScaler(init_loss_scaling=args.scale_loss)
model = paddle.amp.decorate(models=model, level=args.amp_level, save_dtype="float32")
if paddle.distributed.get_world_size() > 1:
model = paddle.DataParallel(model)
pool = ThreadPoolExecutor(1)
global_step = 0
for epoch in range(sys.maxsize):
files = [
os.path.join(args.input_dir, f)
for f in os.listdir(args.input_dir)
if os.path.isfile(os.path.join(args.input_dir, f)) and "train" in f
]
files.sort()
num_files = len(files)
random.Random(args.seed + epoch).shuffle(files)
f_start_id = 0
shared_file_list = {}
if paddle.distributed.get_world_size() > num_files:
remainder = paddle.distributed.get_world_size() % num_files
data_file = files[
(
f_start_id * paddle.distributed.get_world_size()
+ paddle.distributed.get_rank()
+ remainder * f_start_id
)
% num_files
]
else:
data_file = files[
(f_start_id * paddle.distributed.get_world_size() + paddle.distributed.get_rank()) % num_files
]
train_data_loader, _ = create_pretraining_dataset(
data_file, args.max_predictions_per_seq, shared_file_list, args, worker_init
)
# TODO(guosheng): better way to process single file
single_file = True if f_start_id + 1 == len(files) else False
for f_id in range(f_start_id, len(files)):
if not single_file and f_id == f_start_id:
continue
if paddle.distributed.get_world_size() > num_files:
data_file = files[
(f_id * paddle.distributed.get_world_size() + paddle.distributed.get_rank() + remainder * f_id)
% num_files
]
else:
data_file = files[
(f_id * paddle.distributed.get_world_size() + paddle.distributed.get_rank()) % num_files
]
dataset_future = pool.submit(
create_pretraining_dataset,
data_file,
args.max_predictions_per_seq,
shared_file_list,
args,
worker_init,
)
train_cost_avg = TimeCostAverage()
reader_cost_avg = TimeCostAverage()
total_samples = 0
batch_start = time.time()
for step, batch in enumerate(train_data_loader):
train_reader_cost = time.time() - batch_start
reader_cost_avg.record(train_reader_cost)
global_step += 1
(
input_ids,
segment_ids,
input_mask,
masked_lm_positions,
masked_lm_labels,
next_sentence_labels,
masked_lm_scale,
) = batch
with paddle.amp.auto_cast(
args.use_amp,
custom_white_list=["layer_norm", "softmax", "gelu", "fused_attention", "fused_feedforward"],
level=args.amp_level,
):
prediction_scores, seq_relationship_score = model(
input_ids=input_ids,
token_type_ids=segment_ids,
attention_mask=input_mask,
masked_positions=masked_lm_positions,
)
loss = criterion(
prediction_scores,
seq_relationship_score,
masked_lm_labels,
next_sentence_labels,
masked_lm_scale,
)
if args.use_amp:
scaler.scale(loss).backward()
scaler.minimize(optimizer, loss)
else:
loss.backward()
optimizer.step()
lr_scheduler.step()
optimizer.clear_grad()
total_samples += args.batch_size
train_run_cost = time.time() - batch_start
train_cost_avg.record(train_run_cost)
# Profile for model benchmark
if args.profiler_options is not None:
profiler.add_profiler_step(args.profiler_options)
if global_step % args.logging_steps == 0:
if paddle.distributed.get_rank() == 0:
logger.info(
"global step: %d, epoch: %d, batch: %d, loss: %f, "
"avg_reader_cost: %.5f sec, avg_batch_cost: %.5f sec, avg_samples: %.5f, ips: %.5f sequences/sec"
% (
global_step,
epoch,
step,
loss,
reader_cost_avg.get_average(),
train_cost_avg.get_average(),
total_samples / args.logging_steps,
total_samples / (args.logging_steps * train_cost_avg.get_average()),
)
)
total_samples = 0
train_cost_avg.reset()
reader_cost_avg.reset()
if global_step % args.save_steps == 0 or global_step >= args.max_steps:
if paddle.distributed.get_rank() == 0:
output_dir = os.path.join(args.output_dir, "model_%d" % global_step)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# need better way to get inner model of DataParallel
model_to_save = model._layers if isinstance(model, paddle.DataParallel) else model
model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
paddle.save(optimizer.state_dict(), os.path.join(output_dir, "model_state.pdopt"))
if global_step >= args.max_steps:
del train_data_loader
return
batch_start = time.time()
del train_data_loader
train_data_loader, data_file = dataset_future.result(timeout=None)
if __name__ == "__main__":
args = parse_args()
print(args)
do_train(args)