forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer.py
executable file
Β·521 lines (469 loc) Β· 22.1 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import time
from functools import partial
from multiprocessing import cpu_count
import numpy as np
import onnxruntime as ort
import paddle
from datasets import load_dataset
from paddle import inference
from paddle.metric import Accuracy
from paddlenlp.data import DataCollatorForTokenClassification, DataCollatorWithPadding
from paddlenlp.datasets import load_dataset as ppnlp_load_dataset
from paddlenlp.metrics import ChunkEvaluator
from paddlenlp.metrics.squad import compute_prediction, squad_evaluate
from paddlenlp.trainer.argparser import strtobool
from paddlenlp.transformers import AutoTokenizer
METRIC_CLASSES = {
"afqmc": Accuracy,
"tnews": Accuracy,
"iflytek": Accuracy,
"ocnli": Accuracy,
"cmnli": Accuracy,
"cluewsc2020": Accuracy,
"csl": Accuracy,
}
def parse_args():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--task_name",
default="tnews",
type=str,
help="The name of the task to perform predict, selected in the list: " + ", ".join(METRIC_CLASSES.keys()),
)
parser.add_argument(
"--model_name_or_path", default="ernie-3.0-medium-zh", type=str, help="The directory or name of model."
)
parser.add_argument("--model_path", type=str, required=True, help="The path prefix of inference model to be used.")
parser.add_argument(
"--device", default="gpu", choices=["gpu", "cpu", "xpu", "npu"], help="Device selected for inference."
)
parser.add_argument("--batch_size", default=32, type=int, help="Batch size for predict.")
parser.add_argument(
"--max_seq_length",
default=128,
type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.",
)
parser.add_argument("--perf_warmup_steps", default=20, type=int, help="Warmup steps for performance test.")
parser.add_argument(
"--n_best_size",
default=20,
type=int,
help="The total number of n-best predictions to generate in the nbest_predictions.json output file.",
)
parser.add_argument(
"--max_answer_length", default=50, type=int, help="Max answer length for question answering task."
)
parser.add_argument("--shape_file", default="shape_info.txt", type=str, help="Shape info filename.")
parser.add_argument("--use_trt", action="store_true", help="Whether to use inference engin TensorRT.")
parser.add_argument("--use_lite", action="store_true", help="Whether to use inference engin PaddleLite.")
parser.add_argument("--perf", action="store_true", help="Whether to test performance.")
parser.add_argument("--collect_shape", action="store_true", help="Whether to collect shape info.")
parser.add_argument(
"--precision", default="fp32", choices=["fp32", "fp16", "int8"], help="Precision for inference."
)
parser.add_argument(
"--num_threads",
default=cpu_count(),
type=int,
help="num_threads for cpu.",
)
parser.add_argument(
"--enable_quantize",
action="store_true",
help="Whether to enable quantization for acceleration. Valid for both onnx and dnnl",
)
parser.add_argument(
"--enable_bf16",
action="store_true",
help="Whether to use the bfloat16 datatype",
)
parser.add_argument("--use_onnxruntime", type=strtobool, default=False, help="Use onnxruntime to infer or not.")
parser.add_argument(
"--debug", action="store_true", help="With debug it will save graph and model after each pass."
)
parser.add_argument(
"--provider",
default="CPUExecutionProvider",
choices=["CPUExecutionProvider", "DnnlExecutionProvider"],
type=str,
help="Onnx ExecutionProvider with DNNL or without DNNL",
)
parser.add_argument(
"--lazy_data_processing",
default=True,
type=bool,
help="Whether use lazy data processing",
)
args = parser.parse_args()
return args
def convert_example(example, tokenizer, label_list, is_test=False, max_seq_length=512):
"""convert a glue example into necessary features"""
if not is_test:
# `label_list == None` is for regression task
# Get the label
label = np.array(example["label"], dtype="int64")
# Convert raw text to feature
if "keyword" in example: # CSL
sentence1 = " ".join(example["keyword"])
example = {"sentence1": sentence1, "sentence2": example["abst"], "label": example["label"]}
elif "target" in example: # wsc
text, query, pronoun, query_idx, pronoun_idx = (
example["text"],
example["target"]["span1_text"],
example["target"]["span2_text"],
example["target"]["span1_index"],
example["target"]["span2_index"],
)
text_list = list(text)
assert text[pronoun_idx : (pronoun_idx + len(pronoun))] == pronoun, "pronoun: {}".format(pronoun)
assert text[query_idx : (query_idx + len(query))] == query, "query: {}".format(query)
if pronoun_idx > query_idx:
text_list.insert(query_idx, "_")
text_list.insert(query_idx + len(query) + 1, "_")
text_list.insert(pronoun_idx + 2, "[")
text_list.insert(pronoun_idx + len(pronoun) + 2 + 1, "]")
else:
text_list.insert(pronoun_idx, "[")
text_list.insert(pronoun_idx + len(pronoun) + 1, "]")
text_list.insert(query_idx + 2, "_")
text_list.insert(query_idx + len(query) + 2 + 1, "_")
text = "".join(text_list)
example["sentence"] = text
if "sentence" in example:
example = tokenizer(example["sentence"], max_seq_len=max_seq_length)
elif "sentence1" in example:
example = tokenizer(example["sentence1"], text_pair=example["sentence2"], max_seq_len=max_seq_length)
if not is_test:
example["labels"] = label
return example
class Predictor(object):
def __init__(self, predictor, input_handles, output_handles):
self.predictor = predictor
self.input_handles = input_handles
self.output_handles = output_handles
@classmethod
def create_predictor(cls, args):
if args.use_onnxruntime:
assert args.device != "xpu", "Running ONNXRuntime on XPU is temporarily not supported."
if args.model_path.count(".onnx"):
onnx_model = args.model_path
else:
import paddle2onnx
onnx_model = paddle2onnx.command.c_paddle_to_onnx(
model_file=args.model_path + ".pdmodel",
params_file=args.model_path + ".pdiparams",
opset_version=13,
enable_onnx_checker=True,
)
dynamic_quantize_model = onnx_model
if args.enable_quantize:
from onnxruntime.quantization import quantize_dynamic
float_onnx_file = "model.onnx"
with open(float_onnx_file, "wb") as f:
f.write(onnx_model)
dynamic_quantize_model = "dynamic_quantize_model.onnx"
quantize_dynamic(float_onnx_file, dynamic_quantize_model)
sess_options = ort.SessionOptions()
sess_options.intra_op_num_threads = args.num_threads
sess_options.inter_op_num_threads = args.num_threads
executionprovider = args.provider
print("ExecutionProvider is: ", executionprovider)
predictor = ort.InferenceSession(
dynamic_quantize_model, sess_options=sess_options, providers=[executionprovider]
)
input_name1 = predictor.get_inputs()[1].name
input_name2 = predictor.get_inputs()[0].name
input_handles = [input_name1, input_name2]
return cls(predictor, input_handles, [])
config = paddle.inference.Config(args.model_path + ".pdmodel", args.model_path + ".pdiparams")
if args.device == "gpu":
# set GPU configs accordingly
config.enable_use_gpu(100, 0)
cls.device = paddle.set_device("gpu")
elif args.device == "cpu":
# set CPU configs accordingly,
# such as enable_mkldnn, set_cpu_math_library_num_threads
config.disable_gpu()
config.switch_ir_optim(True)
config.enable_mkldnn()
if args.enable_bf16:
config.enable_mkldnn_bfloat16()
if args.enable_quantize:
config.enable_mkldnn_int8()
if args.debug:
config.switch_ir_debug(True)
config.set_cpu_math_library_num_threads(args.num_threads)
cls.device = paddle.set_device("cpu")
elif args.device == "xpu":
# set XPU configs accordingly
config.enable_xpu(100)
elif args.device == "npu":
if args.use_lite:
config.enable_lite_engine(paddle.inference.PrecisionType(0), True)
config.nnadapter().enable().set_device_names(["huawei_ascend_npu"])
else:
config.enable_custom_device("npu")
if args.use_trt:
precision_map = {
"int8": inference.PrecisionType.Int8,
"fp16": inference.PrecisionType.Half,
"fp32": inference.PrecisionType.Float32,
}
config.enable_tensorrt_engine(
workspace_size=1 << 30,
precision_mode=precision_map[args.precision],
max_batch_size=args.batch_size,
min_subgraph_size=5,
use_static=False,
use_calib_mode=False,
)
print("Enable TensorRT is: {}".format(config.tensorrt_engine_enabled()))
if args.collect_shape:
config.collect_shape_range_info(args.task_name + args.shape_file)
else:
config.enable_tuned_tensorrt_dynamic_shape(args.task_name + args.shape_file, True)
config.delete_pass("embedding_eltwise_layernorm_fuse_pass")
predictor = paddle.inference.create_predictor(config)
input_handles = [predictor.get_input_handle(name) for name in predictor.get_input_names()]
output_handles = [predictor.get_output_handle(name) for name in predictor.get_output_names()]
return cls(predictor, input_handles, output_handles)
def set_dynamic_shape(self, max_seq_length, batch_size):
# The dynamic shape info required by TRT is automatically generated according to max_seq_length and batch_size and stored in shape_info.txt
min_batch_size, max_batch_size, opt_batch_size = 1, batch_size, batch_size
min_seq_len, max_seq_len, opt_seq_len = 2, max_seq_length, 32
batches = [
[
np.zeros([min_batch_size, min_seq_len], dtype="int64"),
np.zeros([min_batch_size, min_seq_len], dtype="int64"),
],
[
np.zeros([max_batch_size, max_seq_len], dtype="int64"),
np.zeros([max_batch_size, max_seq_len], dtype="int64"),
],
[
np.zeros([opt_batch_size, opt_seq_len], dtype="int64"),
np.zeros([opt_batch_size, opt_seq_len], dtype="int64"),
],
]
for batch in batches:
self.predict_batch(batch)
print("Set dynamic shape finished, please close set_dynamic_shape and restart.")
exit(0)
def predict_batch(self, data):
if len(self.output_handles) == 0:
input_dict = {}
for input_field, input_handle in zip(data, self.input_handles):
input_dict[input_handle] = input_field
result = self.predictor.run(None, input_dict)
return result
for input_field, input_handle in zip(data, self.input_handles):
input_handle.copy_from_cpu(input_field)
self.predictor.run()
output = [output_handle.copy_to_cpu() for output_handle in self.output_handles]
return output
def predict(self, dataset, tokenizer, batchify_fn, args, dev_example=None, dev_ds_ori=None):
if args.collect_shape:
self.set_dynamic_shape(args.max_seq_length, args.batch_size)
if args.task_name == "cmrc2018":
dataset_removed = dataset.remove_columns(["offset_mapping", "attention_mask", "example_id"])
sample_num = len(dataset)
batches = []
for i in range(0, sample_num, args.batch_size):
batch_size = min(args.batch_size, sample_num - i)
batch = [dataset_removed[i + j] for j in range(batch_size)]
batches.append(batch)
else:
sample_num = len(dataset)
batches = []
for i in range(0, sample_num, args.batch_size):
batch_size = min(args.batch_size, sample_num - i)
batch = [dataset[i + j] for j in range(batch_size)]
batches.append(batch)
if args.perf:
for i, batch in enumerate(batches):
batch = batchify_fn(batch)
input_ids, segment_ids = batch["input_ids"].numpy(), batch["token_type_ids"].numpy()
output = self.predict_batch([input_ids, segment_ids])
if i > args.perf_warmup_steps:
break
time1 = time.time()
nums = 0
for batch in batches:
batch = batchify_fn(batch)
input_ids, segment_ids = batch["input_ids"].numpy(), batch["token_type_ids"].numpy()
nums = nums + input_ids.shape[0]
output = self.predict_batch([input_ids, segment_ids])
total_time = time.time() - time1
print(
"task name: %s, sample nums: %s, time: %s, QPS: %s "
% (args.task_name, nums, total_time, nums / total_time)
)
else:
if args.task_name == "msra_ner":
metric = ChunkEvaluator(label_list=args.label_list)
metric.reset()
all_predictions = []
for batch in batches:
batch = batchify_fn(batch)
input_ids, segment_ids = batch["input_ids"].numpy(), batch["token_type_ids"].numpy()
output = self.predict_batch([input_ids, segment_ids])[0]
preds = np.argmax(output, axis=2)
all_predictions.append(preds.tolist())
num_infer_chunks, num_label_chunks, num_correct_chunks = metric.compute(
batch["seq_len"], paddle.to_tensor(preds), batch["labels"]
)
metric.update(num_infer_chunks.numpy(), num_label_chunks.numpy(), num_correct_chunks.numpy())
res = metric.accumulate()
print("task name: %s, (precision, recall, f1): %s, " % (args.task_name, res))
elif args.task_name == "cmrc2018":
all_start_logits = []
all_end_logits = []
for batch in batches:
batch = batchify_fn(batch)
input_ids, segment_ids = batch["input_ids"].numpy(), batch["token_type_ids"].numpy()
start_logits, end_logits = self.predict_batch([input_ids, segment_ids])
for idx in range(start_logits.shape[0]):
if len(all_start_logits) % 1000 == 0 and len(all_start_logits):
print("Processing example: %d" % len(all_start_logits))
all_start_logits.append(start_logits[idx])
all_end_logits.append(end_logits[idx])
all_predictions, _, _ = compute_prediction(
dev_example,
dataset,
(all_start_logits, all_end_logits),
False,
args.n_best_size,
args.max_answer_length,
)
res = squad_evaluate(
examples=[raw_data for raw_data in dev_example], preds=all_predictions, is_whitespace_splited=False
)
print("task name: %s, EM: %s, F1: %s" % (args.task_name, res["exact"], res["f1"]))
return all_predictions
else:
all_predictions = []
metric = METRIC_CLASSES[args.task_name]()
metric.reset()
for i, batch in enumerate(batches):
batch = batchify_fn(batch)
output = self.predict_batch([batch["input_ids"].numpy(), batch["token_type_ids"].numpy()])[0]
preds = np.argmax(output, axis=1)
all_predictions.append(preds.tolist())
correct = metric.compute(paddle.to_tensor(output), batch["labels"])
metric.update(correct)
res = metric.accumulate()
print("task name: %s, acc: %s, " % (args.task_name, res))
return all_predictions
def tokenize_and_align_labels(example, tokenizer, no_entity_id, max_seq_len=512):
if example["tokens"] == []:
tokenized_input = {
"labels": [],
"input_ids": [],
"token_type_ids": [],
"seq_len": 0,
"length": 0,
}
return tokenized_input
tokenized_input = tokenizer(
example["tokens"],
max_seq_len=max_seq_len,
# We use this argument because the texts in our dataset are lists of words (with a label for each word).
is_split_into_words=True,
return_length=True,
)
label_ids = example["ner_tags"]
if len(tokenized_input["input_ids"]) - 2 < len(label_ids):
label_ids = label_ids[: len(tokenized_input["input_ids"]) - 2]
label_ids = [no_entity_id] + label_ids + [no_entity_id]
label_ids += [no_entity_id] * (len(tokenized_input["input_ids"]) - len(label_ids))
tokenized_input["labels"] = label_ids
return tokenized_input
def prepare_validation_features(examples, tokenizer, doc_stride, max_seq_length):
contexts = examples["context"]
questions = examples["question"]
tokenized_examples = tokenizer(
questions, contexts, stride=doc_stride, max_seq_len=max_seq_length, return_attention_mask=True
)
sample_mapping = tokenized_examples.pop("overflow_to_sample")
tokenized_examples["example_id"] = []
for i in range(len(tokenized_examples["input_ids"])):
# Grab the sequence corresponding to that example (to know what is the context and what is the question).
sequence_ids = tokenized_examples["token_type_ids"][i]
context_index = 1
# One example can give several spans, this is the index of the example containing this span of text.
sample_index = sample_mapping[i]
tokenized_examples["example_id"].append(examples["id"][sample_index])
tokenized_examples["offset_mapping"][i] = [
(o if sequence_ids[k] == context_index and k != len(sequence_ids) - 1 else None)
for k, o in enumerate(tokenized_examples["offset_mapping"][i])
]
return tokenized_examples
def main():
paddle.seed(42)
args = parse_args()
args.task_name = args.task_name.lower()
predictor = Predictor.create_predictor(args)
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
if args.task_name == "msra_ner":
def ner_trans_fn(example, tokenizer, max_seq_length=128, no_entity_id=0):
return tokenize_and_align_labels(
example, tokenizer=tokenizer, no_entity_id=no_entity_id, max_seq_len=max_seq_length
)
trans_fn = partial(ner_trans_fn, tokenizer=tokenizer, max_seq_length=args.max_seq_length)
dev_ds = load_dataset("msra_ner", split="test")
label_list = dev_ds.features["ner_tags"].feature.names
args.label_list = label_list
column_names = dev_ds.column_names
dev_ds = dev_ds.map(trans_fn, remove_columns=column_names)
batchify_fn = DataCollatorForTokenClassification(tokenizer)
predictor.predict(dev_ds, tokenizer, batchify_fn, args)
elif args.task_name == "cmrc2018":
dev_example = load_dataset("cmrc2018", split="validation")
column_names = dev_example.column_names
dev_ds = dev_example.map(
partial(
prepare_validation_features, tokenizer=tokenizer, doc_stride=128, max_seq_length=args.max_seq_length
),
batched=True,
num_proc=4,
remove_columns=column_names,
load_from_cache_file=True,
desc="Running tokenizer on validation dataset",
)
batchify_fn = DataCollatorWithPadding(tokenizer)
predictor.predict(dev_ds, tokenizer, batchify_fn, args, dev_example)
else:
dev_ds = ppnlp_load_dataset("clue", args.task_name, splits="dev")
trans_func = partial(
convert_example,
label_list=dev_ds.label_list,
tokenizer=tokenizer,
max_seq_length=args.max_seq_length,
is_test=False,
)
dev_ds = dev_ds.map(trans_func, lazy=args.lazy_data_processing)
if args.device == "npu":
# NOTE: Avoid CANN recompile operators for different shape inputs, which will result in very slow training.
batchify_fn = DataCollatorWithPadding(tokenizer, padding="max_length", max_length=args.max_seq_length)
else:
batchify_fn = DataCollatorWithPadding(tokenizer)
predictor.predict(dev_ds, tokenizer, batchify_fn, args)
if __name__ == "__main__":
main()