forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
137 lines (120 loc) Β· 5.99 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import paddle
from decode import beam_search_infilling, post_process
from encode import after_padding, convert_example
from paddle.io import DataLoader
from paddlenlp.data import Pad, Tuple
from paddlenlp.datasets import load_dataset
from paddlenlp.transformers import (
BertTokenizer,
ElectraTokenizer,
ErnieForGeneration,
ErnieTinyTokenizer,
ErnieTokenizer,
RobertaTokenizer,
)
from paddlenlp.utils.log import logger
# fmt: off
parser = argparse.ArgumentParser('seq2seq model with ERNIE-GEN')
parser.add_argument("--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(list(ErnieTokenizer.pretrained_init_configuration.keys())))
parser.add_argument('--max_encode_len', type=int, default=24, help="The max encoding sentence length")
parser.add_argument('--max_decode_len', type=int, default=72, help="The max decoding sentence length")
parser.add_argument("--batch_size", default=50, type=int, help="Batch size per GPU/CPU for training.", )
parser.add_argument('--beam_width', type=int, default=3, help="Beam search width")
parser.add_argument('--length_penalty', type=float, default=1.0, help="The length penalty during decoding")
parser.add_argument('--init_checkpoint', type=str, default=None, help='Checkpoint to warm start from')
parser.add_argument("--device", default="gpu", type=str, choices=["cpu", "gpu", "xpu"], help="The device to select to train the model, is must be cpu/gpu/xpu.")
# fmt: on
args = parser.parse_args()
def predict():
paddle.set_device(args.device)
model = ErnieForGeneration.from_pretrained(args.model_name_or_path)
if "ernie-tiny" in args.model_name_or_path:
tokenizer = ErnieTinyTokenizer.from_pretrained(args.model_name_or_path)
elif "ernie" in args.model_name_or_path:
tokenizer = ErnieTokenizer.from_pretrained(args.model_name_or_path)
elif "roberta" in args.model_name_or_path or "rbt" in args.model_name_or_path:
tokenizer = RobertaTokenizer.from_pretrained(args.model_name_or_path)
elif "electra" in args.model_name_or_path:
tokenizer = ElectraTokenizer.from_pretrained(args.model_name_or_path)
else:
tokenizer = BertTokenizer.from_pretrained(args.model_name_or_path)
dev_dataset = load_dataset("poetry", splits=("dev"), lazy=False)
attn_id = tokenizer.vocab["[ATTN]"] if "[ATTN]" in tokenizer.vocab else tokenizer.vocab["[MASK]"]
tgt_type_id = model.sent_emb.weight.shape[0] - 1
trans_func = convert_example(
tokenizer=tokenizer,
attn_id=attn_id,
tgt_type_id=tgt_type_id,
max_encode_len=args.max_encode_len,
max_decode_len=args.max_decode_len,
)
batchify_fn = lambda samples, fn=Tuple(
Pad(axis=0, pad_val=tokenizer.pad_token_id), # src_ids
Pad(axis=0, pad_val=tokenizer.pad_token_id), # src_pids
Pad(axis=0, pad_val=tokenizer.pad_token_id), # src_sids
Pad(axis=0, pad_val=tokenizer.pad_token_id), # tgt_ids
Pad(axis=0, pad_val=tokenizer.pad_token_id), # tgt_pids
Pad(axis=0, pad_val=tokenizer.pad_token_id), # tgt_sids
Pad(axis=0, pad_val=tokenizer.pad_token_id), # attn_ids
Pad(axis=0, pad_val=tokenizer.pad_token_id), # tgt_labels
): after_padding(fn(samples))
dev_dataset = dev_dataset.map(trans_func)
test_batch_sampler = paddle.io.BatchSampler(dev_dataset, batch_size=args.batch_size, shuffle=False)
data_loader = DataLoader(
dataset=dev_dataset, batch_sampler=test_batch_sampler, collate_fn=batchify_fn, num_workers=0, return_list=True
)
if args.init_checkpoint:
model_state = paddle.load(args.init_checkpoint)
model.set_state_dict(model_state)
model.eval()
vocab = tokenizer.vocab
eos_id = vocab[tokenizer.sep_token]
sos_id = vocab[tokenizer.cls_token]
pad_id = vocab[tokenizer.pad_token]
unk_id = vocab[tokenizer.unk_token]
vocab_size = len(vocab)
logger.info("Predicting...")
for data in data_loader:
(src_ids, src_sids, src_pids, _, _, _, _, _, _, _, _, raw_tgt_labels) = data # never use target when infer
# Use greedy_search_infilling or beam_search_infilling to get predictions
output_ids = beam_search_infilling(
model,
src_ids,
src_sids,
eos_id=eos_id,
sos_id=sos_id,
attn_id=attn_id,
pad_id=pad_id,
unk_id=unk_id,
vocab_size=vocab_size,
max_decode_len=args.max_decode_len,
max_encode_len=args.max_encode_len,
beam_width=args.beam_width,
length_penalty=args.length_penalty,
tgt_type_id=tgt_type_id,
)
for source_ids, target_ids, predict_ids in zip(
src_ids.numpy().tolist(), raw_tgt_labels.numpy().tolist(), output_ids.tolist()
):
if eos_id in predict_ids:
predict_ids = predict_ids[: predict_ids.index(eos_id)]
source_sentence = "".join(map(post_process, vocab.to_tokens(source_ids[1 : source_ids.index(eos_id)])))
tgt_sentence = "".join(map(post_process, vocab.to_tokens(target_ids[1 : target_ids.index(eos_id)])))
predict_ids = "".join(map(post_process, vocab.to_tokens(predict_ids)))
print("source :%s\ntarget :%s\npredict:%s\n" % (source_sentence, tgt_sentence, predict_ids))
if __name__ == "__main__":
predict()