|
14 | 14 |
|
15 | 15 | import argparse
|
16 | 16 | import os
|
17 |
| -import random |
18 | 17 | import time
|
19 |
| -import math |
20 |
| -from functools import partial |
21 | 18 |
|
22 |
| -import numpy as np |
23 | 19 | import paddle
|
| 20 | +from datasets import load_dataset |
24 | 21 | from paddle.io import DataLoader
|
25 | 22 |
|
26 |
| -from paddlenlp.transformers import LinearDecayWithWarmup |
27 |
| -from paddlenlp.metrics import ChunkEvaluator |
28 |
| -from datasets import load_dataset |
29 |
| -from paddlenlp.transformers import BertForTokenClassification, BertTokenizer |
30 |
| -from paddlenlp.transformers import ErnieForTokenClassification, ErnieTokenizer |
31 |
| -from paddlenlp.transformers import ErnieCtmForTokenClassification, ErnieCtmTokenizer |
32 | 23 | from paddlenlp.data import DataCollatorForTokenClassification
|
| 24 | +from paddlenlp.metrics import ChunkEvaluator |
| 25 | +from paddlenlp.transformers import ( |
| 26 | + BertForTokenClassification, |
| 27 | + BertTokenizer, |
| 28 | + ErnieCtmForTokenClassification, |
| 29 | + ErnieCtmTokenizer, |
| 30 | + ErnieForTokenClassification, |
| 31 | + ErnieTokenizer, |
| 32 | + LinearDecayWithWarmup, |
| 33 | +) |
33 | 34 | from paddlenlp.utils.log import logger
|
34 | 35 |
|
35 | 36 | MODEL_CLASSES = {
|
|
42 | 43 |
|
43 | 44 | # yapf: disable
|
44 | 45 | parser.add_argument("--model_type", default="bert", type=str, help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()), )
|
45 |
| -parser.add_argument("--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join( sum([ list(classes[-1].pretrained_init_configuration.keys()) for classes in MODEL_CLASSES.values() ], [])), ) |
46 |
| -parser.add_argument("--dataset", default="msra_ner", type=str, choices=["msra_ner", "peoples_daily_ner"] ,help="The named entity recognition datasets.") |
| 46 | +parser.add_argument("--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(sum([list(classes[-1].pretrained_init_configuration.keys()) for classes in MODEL_CLASSES.values()], [])), ) |
| 47 | +parser.add_argument("--dataset", default="msra_ner", type=str, choices=["msra_ner", "peoples_daily_ner"] , help="The named entity recognition datasets.") |
47 | 48 | parser.add_argument("--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.")
|
48 | 49 | parser.add_argument("--max_seq_length", default=128, type=int, help="The maximum total input sequence length after tokenization. Sequences longer than this will be truncated, sequences shorter will be padded.")
|
49 | 50 | parser.add_argument("--batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
|
|
57 | 58 | parser.add_argument("--logging_steps", type=int, default=1, help="Log every X updates steps.")
|
58 | 59 | parser.add_argument("--save_steps", type=int, default=100, help="Save checkpoint every X updates steps.")
|
59 | 60 | parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")
|
60 |
| -parser.add_argument("--device", default="gpu", type=str, choices=["cpu", "gpu", "xpu"] ,help="The device to select to train the model, is must be cpu/gpu/xpu.") |
| 61 | +parser.add_argument("--device", default="gpu", type=str, choices=["cpu", "gpu", "xpu", "npu"] , help="The device to select to train the model, is must be cpu/gpu/xpu/npu.") |
61 | 62 | # yapf: enable
|
62 | 63 |
|
63 | 64 |
|
@@ -179,7 +180,6 @@ def tokenize_and_align_labels(examples):
|
179 | 180 | metric = ChunkEvaluator(label_list=label_list)
|
180 | 181 |
|
181 | 182 | global_step = 0
|
182 |
| - last_step = args.num_train_epochs * len(train_data_loader) |
183 | 183 | tic_train = time.time()
|
184 | 184 | for epoch in range(args.num_train_epochs):
|
185 | 185 | for step, batch in enumerate(train_data_loader):
|
|
0 commit comments