-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathObjectDetection.py
61 lines (47 loc) · 1.96 KB
/
ObjectDetection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import cv2 as cv
import cvzone
import math
from ultralytics import YOLO
# Initialize video capture and model
cap = cv.VideoCapture("8488067.mp4")
model = YOLO("ppe.pt")
# Define class names for detection
classNames = ['Hardhat', 'Mask', 'NO-Hardhat', 'NO-Mask', 'NO-Safety Vest', 'Person', 'Safety Cone',
'Safety Vest', 'machinery', 'vehicle']
# Initializing bounding box color
myColor = (0, 0, 255)
while True:
# Read frame from video
success, img = cap.read()
results = model(img, stream=True)
for r in results:
boxes = r.boxes
for box in boxes:
# Extract bounding box coordinates and confidence score
x1, y1, x2, y2 = box.xyxy[0]
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
w, h = x2 - x1, y2 - y1
# Confidence
conf = math.ceil((box.conf[0] * 100)) / 100
# Class Name
cls = int(box.cls[0])
currentClass = classNames[cls]
# Filter for relevant classes based on confidence threshold
if conf>0.5:
if currentClass in ["NO-Hardhat", "NO-Safety Vest", "NO-Mask"]:
myColor = (0, 0,255)
elif currentClass in ["Hardhat", "Safety Vest", "Mask"]:
myColor =(0,255,0)
else:
myColor = (255, 0, 0)
# Display Class Name, and Draw bounding box on the image
cvzone.putTextRect(img, f'{classNames[cls]} {conf}',
(max(0, x1), max(35, y1)), scale=1, thickness=1,colorB=myColor,
colorT=(255,255,255),colorR=myColor, offset=5)
cv.rectangle(img, (x1, y1), (x2, y2), myColor, 3)
cv.imshow("Image", img)
# Break loop on key press
if cv.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv.destroyAllWindows()