From 896841df4402a5eb5c6f54d6388dfa415dabf610 Mon Sep 17 00:00:00 2001 From: github-actions Date: Tue, 26 Dec 2023 00:31:44 +0000 Subject: [PATCH] Aggregate documentation --- .../dev/.documenter-siteinfo.json | 2 +- ArviZExampleData/dev/api/index.html | 2 +- ArviZExampleData/dev/datasets/index.html | 2 +- .../dev/for_developers/index.html | 2 +- ArviZExampleData/dev/index.html | 2 +- .../dev/.documenter-siteinfo.json | 2 +- InferenceObjects/dev/dataset/index.html | 2 +- InferenceObjects/dev/index.html | 2 +- .../dev/inference_data/index.html | 2 +- PSIS/dev/.documenter-siteinfo.json | 2 +- PSIS/dev/api/index.html | 2 +- PSIS/dev/index.html | 2 +- PSIS/dev/internal/index.html | 2 +- .../plotting/{a112225c.svg => 7089b713.svg} | 218 +++++++++--------- PSIS/dev/plotting/index.html | 2 +- 15 files changed, 123 insertions(+), 123 deletions(-) rename PSIS/dev/plotting/{a112225c.svg => 7089b713.svg} (76%) diff --git a/ArviZExampleData/dev/.documenter-siteinfo.json b/ArviZExampleData/dev/.documenter-siteinfo.json index 9bd85d216..1afb5aaa0 100644 --- a/ArviZExampleData/dev/.documenter-siteinfo.json +++ b/ArviZExampleData/dev/.documenter-siteinfo.json @@ -1 +1 @@ -{"documenter":{"julia_version":"1.9.4","generation_timestamp":"2023-12-24T01:17:32","documenter_version":"1.2.1"}} \ No newline at end of file +{"documenter":{"julia_version":"1.9.4","generation_timestamp":"2023-12-25T01:14:23","documenter_version":"1.2.1"}} \ No newline at end of file diff --git a/ArviZExampleData/dev/api/index.html b/ArviZExampleData/dev/api/index.html index 610c2840f..2ee4834e0 100644 --- a/ArviZExampleData/dev/api/index.html +++ b/ArviZExampleData/dev/api/index.html @@ -30,4 +30,4 @@ > prior > prior_predictive > observed_data - > constant_datasource \ No newline at end of file + > constant_datasource \ No newline at end of file diff --git a/ArviZExampleData/dev/datasets/index.html b/ArviZExampleData/dev/datasets/index.html index 5087d55b4..32a008f10 100644 --- a/ArviZExampleData/dev/datasets/index.html +++ b/ArviZExampleData/dev/datasets/index.html @@ -87,4 +87,4 @@ This model uses a Von Mises distribution to propose torsion angles for the structure of a glycan molecule (pdb id: 2LIQ), and a Potential to estimate the proposed structure's energy. Said Potential is bound by Boltzman's law. -remote: http://ndownloader.figshare.com/files/22882652 \ No newline at end of file +remote: http://ndownloader.figshare.com/files/22882652 \ No newline at end of file diff --git a/ArviZExampleData/dev/for_developers/index.html b/ArviZExampleData/dev/for_developers/index.html index 4f53355a1..e03e11070 100644 --- a/ArviZExampleData/dev/for_developers/index.html +++ b/ArviZExampleData/dev/for_developers/index.html @@ -4,4 +4,4 @@ julia> tarball_url = "https://github.com/arviz-devs/arviz_example_data/archive/refs/tags/v$version.tar.gz"; -julia> add_artifact!("Artifacts.toml", "arviz_example_data", tarball_url; force=true); \ No newline at end of file +julia> add_artifact!("Artifacts.toml", "arviz_example_data", tarball_url; force=true); \ No newline at end of file diff --git a/ArviZExampleData/dev/index.html b/ArviZExampleData/dev/index.html index c3ab5acae..8c3aada28 100644 --- a/ArviZExampleData/dev/index.html +++ b/ArviZExampleData/dev/index.html @@ -1 +1 @@ -Home · ArviZExampleData.jl
\ No newline at end of file +Home · ArviZExampleData.jl
\ No newline at end of file diff --git a/InferenceObjects/dev/.documenter-siteinfo.json b/InferenceObjects/dev/.documenter-siteinfo.json index bfe1d0e38..c2ceb6ced 100644 --- a/InferenceObjects/dev/.documenter-siteinfo.json +++ b/InferenceObjects/dev/.documenter-siteinfo.json @@ -1 +1 @@ -{"documenter":{"julia_version":"1.9.4","generation_timestamp":"2023-12-24T00:45:35","documenter_version":"1.2.1"}} \ No newline at end of file +{"documenter":{"julia_version":"1.9.4","generation_timestamp":"2023-12-25T00:43:42","documenter_version":"1.2.1"}} \ No newline at end of file diff --git a/InferenceObjects/dev/dataset/index.html b/InferenceObjects/dev/dataset/index.html index d08c98276..483e7327b 100644 --- a/InferenceObjects/dev/dataset/index.html +++ b/InferenceObjects/dev/dataset/index.html @@ -5,4 +5,4 @@ data::NamedTuple, dims::Tuple{Vararg{DimensionalData.Dimension}}; metadata=DimensionalData.NoMetadata(), -)

In most cases, use convert_to_dataset to create a Dataset instead of directly using a constructor.

source

General conversion

InferenceObjects.convert_to_datasetFunction
convert_to_dataset(obj; group = :posterior, kwargs...) -> Dataset

Convert a supported object to a Dataset.

In most cases, this function calls convert_to_inference_data and returns the corresponding group.

source
InferenceObjects.namedtuple_to_datasetFunction
namedtuple_to_dataset(data; kwargs...) -> Dataset

Convert NamedTuple mapping variable names to arrays to a Dataset.

Any non-array values will be converted to a 0-dimensional array.

Keywords

  • attrs::AbstractDict{<:AbstractString}: a collection of metadata to attach to the dataset, in addition to defaults. Values should be JSON serializable.
  • library::Union{String,Module}: library used for performing inference. Will be attached to the attrs metadata.
  • dims: a collection mapping variable names to collections of objects containing dimension names. Acceptable such objects are:
    • Symbol: dimension name
    • Type{<:DimensionsionalData.Dimension}: dimension type
    • DimensionsionalData.Dimension: dimension, potentially with indices
    • Nothing: no dimension name provided, dimension name is automatically generated
  • coords: a collection indexable by dimension name specifying the indices of the given dimension. If indices for a dimension in dims are provided, they are used even if the dimension contains its own indices. If a dimension is missing, its indices are automatically generated.
source

DimensionalData

As a DimensionalData.AbstractDimStack, Dataset also implements the AbstractDimStack API and can be used like a DimStack. See DimensionalData's documentation for example usage.

Tables inteface

Dataset implements the Tables interface. This allows Datasets to be used as sources for any function that can accept a table. For example, it's straightforward to:

\ No newline at end of file +)

In most cases, use convert_to_dataset to create a Dataset instead of directly using a constructor.

source

General conversion

InferenceObjects.convert_to_datasetFunction
convert_to_dataset(obj; group = :posterior, kwargs...) -> Dataset

Convert a supported object to a Dataset.

In most cases, this function calls convert_to_inference_data and returns the corresponding group.

source
InferenceObjects.namedtuple_to_datasetFunction
namedtuple_to_dataset(data; kwargs...) -> Dataset

Convert NamedTuple mapping variable names to arrays to a Dataset.

Any non-array values will be converted to a 0-dimensional array.

Keywords

  • attrs::AbstractDict{<:AbstractString}: a collection of metadata to attach to the dataset, in addition to defaults. Values should be JSON serializable.
  • library::Union{String,Module}: library used for performing inference. Will be attached to the attrs metadata.
  • dims: a collection mapping variable names to collections of objects containing dimension names. Acceptable such objects are:
    • Symbol: dimension name
    • Type{<:DimensionsionalData.Dimension}: dimension type
    • DimensionsionalData.Dimension: dimension, potentially with indices
    • Nothing: no dimension name provided, dimension name is automatically generated
  • coords: a collection indexable by dimension name specifying the indices of the given dimension. If indices for a dimension in dims are provided, they are used even if the dimension contains its own indices. If a dimension is missing, its indices are automatically generated.
source

DimensionalData

As a DimensionalData.AbstractDimStack, Dataset also implements the AbstractDimStack API and can be used like a DimStack. See DimensionalData's documentation for example usage.

Tables inteface

Dataset implements the Tables interface. This allows Datasets to be used as sources for any function that can accept a table. For example, it's straightforward to:

\ No newline at end of file diff --git a/InferenceObjects/dev/index.html b/InferenceObjects/dev/index.html index e927ab2a3..3a82f365f 100644 --- a/InferenceObjects/dev/index.html +++ b/InferenceObjects/dev/index.html @@ -1 +1 @@ -Home · InferenceObjects.jl

InferenceObjects

InferenceObjects.jl is a Julia implementation of the InferenceData schema for storing results of Bayesian inference. Its purpose is to serve the following three goals:

  1. Usefulness in the analysis of Bayesian inference results.
  2. Reproducibility of Bayesian inference analysis.
  3. Interoperability between different inference backends and programming languages.

The implementation consists primarily of the InferenceData and Dataset structures. InferenceObjects also provides the function convert_to_inference_data, which may be overloaded by inference packages to define how various inference outputs can be converted to an InferenceData.

For examples of how InferenceData can be used, see the ArviZ.jl documentation.

\ No newline at end of file +Home · InferenceObjects.jl

InferenceObjects

InferenceObjects.jl is a Julia implementation of the InferenceData schema for storing results of Bayesian inference. Its purpose is to serve the following three goals:

  1. Usefulness in the analysis of Bayesian inference results.
  2. Reproducibility of Bayesian inference analysis.
  3. Interoperability between different inference backends and programming languages.

The implementation consists primarily of the InferenceData and Dataset structures. InferenceObjects also provides the function convert_to_inference_data, which may be overloaded by inference packages to define how various inference outputs can be converted to an InferenceData.

For examples of how InferenceData can be used, see the ArviZ.jl documentation.

\ No newline at end of file diff --git a/InferenceObjects/dev/inference_data/index.html b/InferenceObjects/dev/inference_data/index.html index cef1bbaf7..9648c3a26 100644 --- a/InferenceObjects/dev/inference_data/index.html +++ b/InferenceObjects/dev/inference_data/index.html @@ -190,4 +190,4 @@ > posterior julia> to_netcdf(idata, "data.nc") -"data.nc"source \ No newline at end of file +"data.nc"source \ No newline at end of file diff --git a/PSIS/dev/.documenter-siteinfo.json b/PSIS/dev/.documenter-siteinfo.json index dc2c1c847..79dc7ab2c 100644 --- a/PSIS/dev/.documenter-siteinfo.json +++ b/PSIS/dev/.documenter-siteinfo.json @@ -1 +1 @@ -{"documenter":{"julia_version":"1.9.4","generation_timestamp":"2023-12-24T00:43:58","documenter_version":"1.2.1"}} \ No newline at end of file +{"documenter":{"julia_version":"1.9.4","generation_timestamp":"2023-12-25T00:42:07","documenter_version":"1.2.1"}} \ No newline at end of file diff --git a/PSIS/dev/api/index.html b/PSIS/dev/api/index.html index 89d97487f..bc7f5fbc7 100644 --- a/PSIS/dev/api/index.html +++ b/PSIS/dev/api/index.html @@ -6,4 +6,4 @@ x = rand(proposal, 1_000, 100) log_ratios = logpdf.(target, x) .- logpdf.(proposal, x) result = psis(log_ratios) -paretoshapeplot(result)

We can also plot the Pareto shape parameters directly:

paretoshapeplot(result.pareto_shape)

We can also use plot directly:

plot(result.pareto_shape; showlines=true)
source
\ No newline at end of file +paretoshapeplot(result)

We can also plot the Pareto shape parameters directly:

paretoshapeplot(result.pareto_shape)

We can also use plot directly:

plot(result.pareto_shape; showlines=true)
source
\ No newline at end of file diff --git a/PSIS/dev/index.html b/PSIS/dev/index.html index 83dee51a4..c43c84b02 100644 --- a/PSIS/dev/index.html +++ b/PSIS/dev/index.html @@ -13,4 +13,4 @@ (-Inf, 0.5] good 7 (23.3%) 959 (0.5, 0.7] okay 14 (46.7%) 927 (0.7, 1] bad 8 (26.7%) —— - (1, Inf) very bad 1 (3.3%) ——

As indicated by the warnings, this is a poor choice of a proposal distribution, and estimates are unlikely to converge (see PSISResult for an explanation of the shape thresholds).

When running PSIS with many parameters, it is useful to plot the Pareto shape values to diagnose convergence. See Plotting PSIS results for examples.

\ No newline at end of file + (1, Inf) very bad 1 (3.3%) ——

As indicated by the warnings, this is a poor choice of a proposal distribution, and estimates are unlikely to converge (see PSISResult for an explanation of the shape thresholds).

When running PSIS with many parameters, it is useful to plot the Pareto shape values to diagnose convergence. See Plotting PSIS results for examples.

\ No newline at end of file diff --git a/PSIS/dev/internal/index.html b/PSIS/dev/internal/index.html index e222340b0..38faed02d 100644 --- a/PSIS/dev/internal/index.html +++ b/PSIS/dev/internal/index.html @@ -1 +1 @@ -Internal · PSIS.jl

Internal

PSIS.GeneralizedParetoType
GeneralizedPareto{T<:Real}

The generalized Pareto distribution.

This is equivalent to Distributions.GeneralizedPareto and can be converted to one with convert(Distributions.GeneralizedPareto, d).

Constructor

GeneralizedPareto(μ, σ, k)

Construct the generalized Pareto distribution (GPD) with location parameter $μ$, scale parameter $σ$ and shape parameter $k$.

Note

The shape parameter $k$ is equivalent to the commonly used shape parameter $ξ$. This is the same parameterization used by [VehtariSimpson2021] and is related to that used by [ZhangStephens2009] as $k \mapsto -k$.

source
PSIS.fit_gpdMethod
fit_gpd(x; μ=0, kwargs...)

Fit a GeneralizedPareto with location μ to the data x.

The fit is performed using the Empirical Bayes method of [ZhangStephens2009].

Keywords

  • prior_adjusted::Bool=true, If true, a weakly informative Normal prior centered on $\frac{1}{2}$ is used for the shape $k$.
  • sorted::Bool=issorted(x): If true, x is assumed to be sorted. If false, a sorted copy of x is made.
  • min_points::Int=30: The minimum number of quadrature points to use when estimating the posterior mean of $\theta = \frac{\xi}{\sigma}$.
source
\ No newline at end of file +Internal · PSIS.jl

Internal

PSIS.GeneralizedParetoType
GeneralizedPareto{T<:Real}

The generalized Pareto distribution.

This is equivalent to Distributions.GeneralizedPareto and can be converted to one with convert(Distributions.GeneralizedPareto, d).

Constructor

GeneralizedPareto(μ, σ, k)

Construct the generalized Pareto distribution (GPD) with location parameter $μ$, scale parameter $σ$ and shape parameter $k$.

Note

The shape parameter $k$ is equivalent to the commonly used shape parameter $ξ$. This is the same parameterization used by [VehtariSimpson2021] and is related to that used by [ZhangStephens2009] as $k \mapsto -k$.

source
PSIS.fit_gpdMethod
fit_gpd(x; μ=0, kwargs...)

Fit a GeneralizedPareto with location μ to the data x.

The fit is performed using the Empirical Bayes method of [ZhangStephens2009].

Keywords

  • prior_adjusted::Bool=true, If true, a weakly informative Normal prior centered on $\frac{1}{2}$ is used for the shape $k$.
  • sorted::Bool=issorted(x): If true, x is assumed to be sorted. If false, a sorted copy of x is made.
  • min_points::Int=30: The minimum number of quadrature points to use when estimating the posterior mean of $\theta = \frac{\xi}{\sigma}$.
source
\ No newline at end of file diff --git a/PSIS/dev/plotting/a112225c.svg b/PSIS/dev/plotting/7089b713.svg similarity index 76% rename from PSIS/dev/plotting/a112225c.svg rename to PSIS/dev/plotting/7089b713.svg index 4766052f3..14b09092c 100644 --- a/PSIS/dev/plotting/a112225c.svg +++ b/PSIS/dev/plotting/7089b713.svg @@ -1,124 +1,124 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/PSIS/dev/plotting/index.html b/PSIS/dev/plotting/index.html index 21b2cfdbb..f907c205e 100644 --- a/PSIS/dev/plotting/index.html +++ b/PSIS/dev/plotting/index.html @@ -10,4 +10,4 @@ (-Inf, 0.5] good 4 (20.0%) 959 (0.5, 0.7] okay 10 (50.0%) 927 (0.7, 1] bad 6 (30.0%) ——

Plots.jl

PSISResult objects can be plotted directly:

using Plots
-plot(result; showlines=true, marker=:+, legend=false, linewidth=2)
Example block output

This is equivalent to calling PSISPlots.paretoshapeplot(result; kwargs...).

\ No newline at end of file +plot(result; showlines=true, marker=:+, legend=false, linewidth=2)Example block output

This is equivalent to calling PSISPlots.paretoshapeplot(result; kwargs...).

\ No newline at end of file