-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
208 lines (161 loc) · 7.29 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import torch
from torch import nn
import torch.optim as optim
from torch.autograd import Variable
import torch.nn.functional as F
from sklearn.metrics import accuracy_score,confusion_matrix,f1_score
import numpy as np
import os
import optuna
import pickle
import sys
import random
from function import *
import models
from torch.optim.lr_scheduler import ExponentialLR
from sklearn import metrics
def setseed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
#torch.use_deterministic_algorithms(True)
#torch.backends.cudnn.deterministic = True
#torch.backends.cudnn.benchmark = False
class Engine:
def __init__(self,model,optimizer,device,idx,filename):
self.model=model
self.device=device
self.optimizer=optimizer
self.idx=str(idx)
self.filename=filename
self.loss_recon = nn.MSELoss()
self.diver=nn.KLDivLoss(reduction='batchmean')
@staticmethod
def loss_fn(outputs,target):
Loss=nn.CrossEntropyLoss()
return Loss(outputs,target)
def train(self,data_loader):
self.model.train()
final_loss = 0
truth=[]
predict=[]
for batch_idx, (data,label,eda,ppg,name) in enumerate(data_loader):
data,eda,label = data.to(self.device).float(), eda.to(self.device).float(),label.to(self.device).long()
data, eda ,label= Variable(data), Variable(eda),Variable(label)
outputs = self.model(data, eda)
loss,y_hat,logit = self.model.get_loss(outputs, label)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
final_loss+= loss.item()
truth.extend(label.tolist())
predict.extend(y_hat.tolist())
trainacc=accuracy_score(truth,predict)
cf = confusion_matrix(truth,predict)
f1score=f1_score(truth,predict,average='weighted')
with open("./"+self.filename+'/logs_'+self.idx+'.txt', 'a+') as f:
print('Train : Loss: {:.4f}, Train acc : {:.4f}, Train f1 : {:.4f}'.format(final_loss/len(data_loader),trainacc,f1score),file=f)
return f1score
def evalue(self,data_loader):
self.model.eval()
final_loss = 0
truth=[]
predict=[]
nameid=[]
raw=[]
for batch_idx, (data,label,eda,ppg,name) in enumerate(data_loader):
data,eda,label = data.to(self.device).float(), eda.to(self.device).float(),label.to(self.device).long()
data, eda ,label= Variable(data), Variable(eda),Variable(label)
outputs = self.model.infer(data, eda)
loss,y_hat,logit = self.model.get_loss(outputs, label)
final_loss+= loss.item()
truth.extend(label.tolist())
predict.extend(y_hat.tolist())
raw.extend(logit)
nameid.extend(name)
uniq_id=np.unique(nameid)
with open("./"+self.filename+'/logs_'+self.idx+'.txt', 'a+') as f:
print('User wise',file=f,end =" ")
for ids in uniq_id:
table = zip(nameid, truth,predict)
filt=list(filter(lambda s:s[0]==ids ,table))
acc=accuracy_score(list(zip(*filt))[1],list(zip(*filt))[2])
with open("./"+self.filename+'/logs_'+self.idx+'.txt', 'a+') as f:
print('{:.4f}'.format(acc),file=f,end =",")
valacc=accuracy_score(truth,predict)
cf = confusion_matrix(truth,predict)
auc=metrics.roc_auc_score(truth, raw, average='micro')
f1score=f1_score(truth,predict,average='weighted')
with open("./"+self.filename+'/logs_'+self.idx+'.txt', 'a+') as f:
print('Val : Loss: {:.4f}, Val acc : {:.4f}, Val f1 : {:.4f}, Val AUC : {:.4f}'.format(final_loss/len(data_loader),valacc,f1score,auc),file=f)
print(cf,file=f)
return f1score
def objective(modelname,dataidx,trial=None,filename=None):
params={
"nchannels":16,
"hidden_size":128,
"hyper_size":32,
"LR":trial.suggest_loguniform("LR",1e-5,1e-3),
#"LR":trial.suggest_loguniform("LR",1e-6,1e-3),
"dropout":0.2,
"epoch":100,
}
setseed(2023)
with open(filename+"params_trial_number_{}.pickle".format(trial.number), "wb") as fout:
pickle.dump(params, fout)
model_train = models.Models[modelname](hyper_size=params["hyper_size"],hidden_size=params["hidden_size"],dropout=params["dropout"],nchannels=params["nchannels"])
#model_path='./'+'mm'+'/train'+'2'+'seed'+'1'+'.pth'
#model_train.load_state_dict(torch.load(model_path))
for name, layer in model_train.named_children():
for n, l in layer.named_modules():
if hasattr(l, 'reset_parameters'):
l.reset_parameters()
device_train = torch.device("cuda" if torch.cuda.is_available() else "cpu")
with open(filename+'/logs_'+str(dataidx)+'.txt', 'a+') as f:
print(device_train,file=f)
print(torch.cuda.device_count(),file=f)
print(torch.cuda.get_device_name(0),file=f)
model_train.to(device_train)
optimizer_train = optim.Adam(model_train.parameters(), lr=params["LR"])#
#scheduler = ExponentialLR(optimizer_train, gamma=0.5)
epoch=params["epoch"]
eng =Engine(model_train,optimizer_train,device_train,dataidx,filename)
best_f1=0
best_test_f1=0
early_stopping_itr=20
e_s_counter=0
for e in range(epoch):
if(e==0):
with open(filename+'/logs_'+str(dataidx)+'.txt', 'a+') as f:
print("\n----------------------------------------NEW_TRIAL--------------------------------------\n",file=f)
print('trail',trial.number,file=f)
with open(filename+'/logs_'+str(dataidx)+'.txt', 'a+') as f:
print("EPOCH: ",e,file=f)
train_f1=eng.train(train_data_loader)
valid_f1=eng.evalue(val_data_loader)
if valid_f1 >= best_f1 and train_f1>0.7:
best_f1 = valid_f1
best_state=model_train.state_dict()
torch.save(best_state, filename+"train"+str(trial.number)+'seed'+str(dataidx)+".pth")
elif train_f1>0.7:
e_s_counter+=1
#scheduler.step()
if(e_s_counter>early_stopping_itr):
break
return best_f1
if __name__ == '__main__':
paras=sys.argv[1:]
data_idx=int(paras[0])
modelname=paras[1]
global train_data_loader,val_data_loader
train_data_loader,val_data_loader=get_train_dataloader(batch_size=5,idx=data_idx)
model_path='./'+modelname+'/'
if not os.path.exists(model_path):
os.makedirs(model_path)
with open(model_path+'/logs_'+str(data_idx)+'.txt', 'w') as f:
print("prgram start",file=f)
sampler = optuna.samplers.TPESampler(seed=2023)
study=optuna.create_study(sampler=sampler,direction="maximize",study_name="hyper")
study.optimize(lambda trial: objective(modelname,data_idx,trial,model_path),n_trials=5)
trial_=study.best_trial