-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbessel_i.c
533 lines (491 loc) · 15.8 KB
/
bessel_i.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
/*
* Mathlib : A C Library of Special Functions
* Copyright (C) 1998-2012 Ross Ihaka and the R Core team.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, a copy is available at
* http://www.r-project.org/Licenses/
*/
/* DESCRIPTION --> see below */
/* From http://www.netlib.org/specfun/ribesl Fortran translated by f2c,...
* ------------------------------=#---- Martin Maechler, ETH Zurich
*/
#include "nmath.h"
#include "bessel.h"
#ifndef MATHLIB_STANDALONE
#include <R_ext/Memory.h>
#endif
#define min0(x, y) (((x) <= (y)) ? (x) : (y))
static void I_bessel(double *x, double *alpha, long *nb,
long *ize, double *bi, long *ncalc);
/* .Internal(besselI(*)) : */
double bessel_i(double x, double alpha, double expo)
{
long nb, ncalc, ize;
double na, *bi;
#ifndef MATHLIB_STANDALONE
const void *vmax;
#endif
#ifdef IEEE_754
/* NaNs propagated correctly */
if (ISNAN(x) || ISNAN(alpha)) return x + alpha;
#endif
if (x < 0) {
ML_ERROR(ME_RANGE, "bessel_i");
return ML_NAN;
}
ize = (long)expo;
na = floor(alpha);
if (alpha < 0) {
/* Using Abramowitz & Stegun 9.6.2 & 9.6.6
* this may not be quite optimal (CPU and accuracy wise) */
return(bessel_i(x, -alpha, expo) +
((alpha == na) ? /* sin(pi * alpha) = 0 */ 0 :
bessel_k(x, -alpha, expo) *
((ize == 1)? 2. : 2.*exp(-2.*x))/M_PI * sin(-M_PI * alpha)));
}
nb = 1 + (long)na;/* nb-1 <= alpha < nb */
alpha -= (double)(nb-1);
#ifdef MATHLIB_STANDALONE
bi = (double *) calloc(nb, sizeof(double));
if (!bi) MATHLIB_ERROR("%s", _("bessel_i allocation error"));
#else
vmax = vmaxget();
bi = (double *) R_alloc((size_t) nb, sizeof(double));
#endif
I_bessel(&x, &alpha, &nb, &ize, bi, &ncalc);
if(ncalc != nb) {/* error input */
if(ncalc < 0)
MATHLIB_WARNING4(_("bessel_i(%g): ncalc (=%ld) != nb (=%ld); alpha=%g. Arg. out of range?\n"),
x, ncalc, nb, alpha);
else
MATHLIB_WARNING2(_("bessel_i(%g,nu=%g): precision lost in result\n"),
x, alpha+(double)nb-1);
}
x = bi[nb-1];
#ifdef MATHLIB_STANDALONE
free(bi);
#else
vmaxset(vmax);
#endif
return x;
}
/* modified version of bessel_i that accepts a work array instead of
allocating one. */
double bessel_i_ex(double x, double alpha, double expo, double *bi)
{
long nb, ncalc, ize;
double na;
#ifdef IEEE_754
/* NaNs propagated correctly */
if (ISNAN(x) || ISNAN(alpha)) return x + alpha;
#endif
if (x < 0) {
ML_ERROR(ME_RANGE, "bessel_i");
return ML_NAN;
}
ize = (long)expo;
na = floor(alpha);
if (alpha < 0) {
/* Using Abramowitz & Stegun 9.6.2 & 9.6.6
* this may not be quite optimal (CPU and accuracy wise) */
return(bessel_i_ex(x, -alpha, expo, bi) +
((alpha == na) ? 0 :
bessel_k_ex(x, -alpha, expo, bi) *
((ize == 1)? 2. : 2.*exp(-2.*x))/M_PI * sin(-M_PI * alpha)));
}
nb = 1 + (long)na;/* nb-1 <= alpha < nb */
alpha -= (double)(nb-1);
I_bessel(&x, &alpha, &nb, &ize, bi, &ncalc);
if(ncalc != nb) {/* error input */
if(ncalc < 0)
MATHLIB_WARNING4(_("bessel_i(%g): ncalc (=%ld) != nb (=%ld); alpha=%g. Arg. out of range?\n"),
x, ncalc, nb, alpha);
else
MATHLIB_WARNING2(_("bessel_i(%g,nu=%g): precision lost in result\n"),
x, alpha+(double)nb-1);
}
x = bi[nb-1];
return x;
}
static void I_bessel(double *x, double *alpha, long *nb,
long *ize, double *bi, long *ncalc)
{
/* -------------------------------------------------------------------
This routine calculates Bessel functions I_(N+ALPHA) (X)
for non-negative argument X, and non-negative order N+ALPHA,
with or without exponential scaling.
Explanation of variables in the calling sequence
X - Non-negative argument for which
I's or exponentially scaled I's (I*EXP(-X))
are to be calculated. If I's are to be calculated,
X must be less than exparg_BESS (IZE=1) or xlrg_BESS_IJ (IZE=2),
(see bessel.h).
ALPHA - Fractional part of order for which
I's or exponentially scaled I's (I*EXP(-X)) are
to be calculated. 0 <= ALPHA < 1.0.
NB - Number of functions to be calculated, NB > 0.
The first function calculated is of order ALPHA, and the
last is of order (NB - 1 + ALPHA).
IZE - Type. IZE = 1 if unscaled I's are to be calculated,
= 2 if exponentially scaled I's are to be calculated.
BI - Output vector of length NB. If the routine
terminates normally (NCALC=NB), the vector BI contains the
functions I(ALPHA,X) through I(NB-1+ALPHA,X), or the
corresponding exponentially scaled functions.
NCALC - Output variable indicating possible errors.
Before using the vector BI, the user should check that
NCALC=NB, i.e., all orders have been calculated to
the desired accuracy. See error returns below.
*******************************************************************
*******************************************************************
Error returns
In case of an error, NCALC != NB, and not all I's are
calculated to the desired accuracy.
NCALC < 0: An argument is out of range. For example,
NB <= 0, IZE is not 1 or 2, or IZE=1 and ABS(X) >= EXPARG_BESS.
In this case, the BI-vector is not calculated, and NCALC is
set to MIN0(NB,0)-1 so that NCALC != NB.
NB > NCALC > 0: Not all requested function values could
be calculated accurately. This usually occurs because NB is
much larger than ABS(X). In this case, BI[N] is calculated
to the desired accuracy for N <= NCALC, but precision
is lost for NCALC < N <= NB. If BI[N] does not vanish
for N > NCALC (because it is too small to be represented),
and BI[N]/BI[NCALC] = 10**(-K), then only the first NSIG-K
significant figures of BI[N] can be trusted.
Intrinsic functions required are:
DBLE, EXP, gamma_cody, INT, MAX, MIN, REAL, SQRT
Acknowledgement
This program is based on a program written by David J.
Sookne (2) that computes values of the Bessel functions J or
I of float argument and long order. Modifications include
the restriction of the computation to the I Bessel function
of non-negative float argument, the extension of the computation
to arbitrary positive order, the inclusion of optional
exponential scaling, and the elimination of most underflow.
An earlier version was published in (3).
References: "A Note on Backward Recurrence Algorithms," Olver,
F. W. J., and Sookne, D. J., Math. Comp. 26, 1972,
pp 941-947.
"Bessel Functions of Real Argument and Integer Order,"
Sookne, D. J., NBS Jour. of Res. B. 77B, 1973, pp
125-132.
"ALGORITHM 597, Sequence of Modified Bessel Functions
of the First Kind," Cody, W. J., Trans. Math. Soft.,
1983, pp. 242-245.
Latest modification: May 30, 1989
Modified by: W. J. Cody and L. Stoltz
Applied Mathematics Division
Argonne National Laboratory
Argonne, IL 60439
*/
/*-------------------------------------------------------------------
Mathematical constants
-------------------------------------------------------------------*/
const static double const__ = 1.585;
/* Local variables */
long nend, intx, nbmx, k, l, n, nstart;
double pold, test, p, em, en, empal, emp2al, halfx,
aa, bb, cc, psave, plast, tover, psavel, sum, nu, twonu;
/*Parameter adjustments */
--bi;
nu = *alpha;
twonu = nu + nu;
/*-------------------------------------------------------------------
Check for X, NB, OR IZE out of range.
------------------------------------------------------------------- */
if (*nb > 0 && *x >= 0. && (0. <= nu && nu < 1.) &&
(1 <= *ize && *ize <= 2) ) {
*ncalc = *nb;
if(*ize == 1 && *x > exparg_BESS) {
for(k=1; k <= *nb; k++)
bi[k]=ML_POSINF; /* the limit *is* = Inf */
return;
}
if(*ize == 2 && *x > xlrg_BESS_IJ) {
for(k=1; k <= *nb; k++)
bi[k]= 0.; /* The limit exp(-x) * I_nu(x) --> 0 : */
return;
}
intx = (long) (*x);/* fine, since *x <= xlrg_BESS_IJ <<< LONG_MAX */
if (*x >= rtnsig_BESS) { /* "non-small" x ( >= 1e-4 ) */
/* -------------------------------------------------------------------
Initialize the forward sweep, the P-sequence of Olver
------------------------------------------------------------------- */
nbmx = *nb - intx;
n = intx + 1;
en = (double) (n + n) + twonu;
plast = 1.;
p = en / *x;
/* ------------------------------------------------
Calculate general significance test
------------------------------------------------ */
test = ensig_BESS + ensig_BESS;
if (intx << 1 > nsig_BESS * 5) {
test = sqrt(test * p);
} else {
test /= pow(const__, (double)intx);
}
if (nbmx >= 3) {
/* --------------------------------------------------
Calculate P-sequence until N = NB-1
Check for possible overflow.
------------------------------------------------ */
tover = enten_BESS / ensig_BESS;
nstart = intx + 2;
nend = *nb - 1;
for (k = nstart; k <= nend; ++k) {
n = k;
en += 2.;
pold = plast;
plast = p;
p = en * plast / *x + pold;
if (p > tover) {
/* ------------------------------------------------
To avoid overflow, divide P-sequence by TOVER.
Calculate P-sequence until ABS(P) > 1.
---------------------------------------------- */
tover = enten_BESS;
p /= tover;
plast /= tover;
psave = p;
psavel = plast;
nstart = n + 1;
do {
++n;
en += 2.;
pold = plast;
plast = p;
p = en * plast / *x + pold;
}
while (p <= 1.);
bb = en / *x;
/* ------------------------------------------------
Calculate backward test, and find NCALC,
the highest N such that the test is passed.
------------------------------------------------ */
test = pold * plast / ensig_BESS;
test *= .5 - .5 / (bb * bb);
p = plast * tover;
--n;
en -= 2.;
nend = min0(*nb,n);
for (l = nstart; l <= nend; ++l) {
*ncalc = l;
pold = psavel;
psavel = psave;
psave = en * psavel / *x + pold;
if (psave * psavel > test) {
goto L90;
}
}
*ncalc = nend + 1;
L90:
--(*ncalc);
goto L120;
}
}
n = nend;
en = (double)(n + n) + twonu;
/*---------------------------------------------------
Calculate special significance test for NBMX > 2.
--------------------------------------------------- */
test = fmax2(test,sqrt(plast * ensig_BESS) * sqrt(p + p));
}
/* --------------------------------------------------------
Calculate P-sequence until significance test passed.
-------------------------------------------------------- */
do {
++n;
en += 2.;
pold = plast;
plast = p;
p = en * plast / *x + pold;
} while (p < test);
L120:
/* -------------------------------------------------------------------
Initialize the backward recursion and the normalization sum.
------------------------------------------------------------------- */
++n;
en += 2.;
bb = 0.;
aa = 1. / p;
em = (double) n - 1.;
empal = em + nu;
emp2al = em - 1. + twonu;
sum = aa * empal * emp2al / em;
nend = n - *nb;
if (nend < 0) {
/* -----------------------------------------------------
N < NB, so store BI[N] and set higher orders to 0..
----------------------------------------------------- */
bi[n] = aa;
nend = -nend;
for (l = 1; l <= nend; ++l) {
bi[n + l] = 0.;
}
} else {
if (nend > 0) {
/* -----------------------------------------------------
Recur backward via difference equation,
calculating (but not storing) BI[N], until N = NB.
--------------------------------------------------- */
for (l = 1; l <= nend; ++l) {
--n;
en -= 2.;
cc = bb;
bb = aa;
/* for x ~= 1500, sum would overflow to 'inf' here,
* and the final bi[] /= sum would give 0 wrongly;
* RE-normalize (aa, sum) here -- no need to undo */
if(nend > 100 && aa > 1e200) {
/* multiply by 2^-900 = 1.18e-271 */
cc = ldexp(cc, -900);
bb = ldexp(bb, -900);
sum = ldexp(sum,-900);
}
aa = en * bb / *x + cc;
em -= 1.;
emp2al -= 1.;
if (n == 1) {
break;
}
if (n == 2) {
emp2al = 1.;
}
empal -= 1.;
sum = (sum + aa * empal) * emp2al / em;
}
}
/* ---------------------------------------------------
Store BI[NB]
--------------------------------------------------- */
bi[n] = aa;
if (*nb <= 1) {
sum = sum + sum + aa;
goto L230;
}
/* -------------------------------------------------
Calculate and Store BI[NB-1]
------------------------------------------------- */
--n;
en -= 2.;
bi[n] = en * aa / *x + bb;
if (n == 1) {
goto L220;
}
em -= 1.;
if (n == 2)
emp2al = 1.;
else
emp2al -= 1.;
empal -= 1.;
sum = (sum + bi[n] * empal) * emp2al / em;
}
nend = n - 2;
if (nend > 0) {
/* --------------------------------------------
Calculate via difference equation
and store BI[N], until N = 2.
------------------------------------------ */
for (l = 1; l <= nend; ++l) {
--n;
en -= 2.;
bi[n] = en * bi[n + 1] / *x + bi[n + 2];
em -= 1.;
if (n == 2)
emp2al = 1.;
else
emp2al -= 1.;
empal -= 1.;
sum = (sum + bi[n] * empal) * emp2al / em;
}
}
/* ----------------------------------------------
Calculate BI[1]
-------------------------------------------- */
bi[1] = 2. * empal * bi[2] / *x + bi[3];
L220:
sum = sum + sum + bi[1];
L230:
/* ---------------------------------------------------------
Normalize. Divide all BI[N] by sum.
--------------------------------------------------------- */
if (nu != 0.)
sum *= (gamma_cody(1. + nu) * pow(*x * .5, -nu));
if (*ize == 1)
sum *= exp(-(*x));
aa = enmten_BESS;
if (sum > 1.)
aa *= sum;
for (n = 1; n <= *nb; ++n) {
if (bi[n] < aa)
bi[n] = 0.;
else
bi[n] /= sum;
}
return;
} else { /* small x < 1e-4 */
/* -----------------------------------------------------------
Two-term ascending series for small X.
-----------------------------------------------------------*/
aa = 1.;
empal = 1. + nu;
#ifdef IEEE_754
/* No need to check for underflow */
halfx = .5 * *x;
#else
if (*x > enmten_BESS) */
halfx = .5 * *x;
else
halfx = 0.;
#endif
if (nu != 0.)
aa = pow(halfx, nu) / gamma_cody(empal);
if (*ize == 2)
aa *= exp(-(*x));
bb = halfx * halfx;
bi[1] = aa + aa * bb / empal;
if (*x != 0. && bi[1] == 0.)
*ncalc = 0;
if (*nb > 1) {
if (*x == 0.) {
for (n = 2; n <= *nb; ++n)
bi[n] = 0.;
} else {
/* -------------------------------------------------
Calculate higher-order functions.
------------------------------------------------- */
cc = halfx;
tover = (enmten_BESS + enmten_BESS) / *x;
if (bb != 0.)
tover = enmten_BESS / bb;
for (n = 2; n <= *nb; ++n) {
aa /= empal;
empal += 1.;
aa *= cc;
if (aa <= tover * empal)
bi[n] = aa = 0.;
else
bi[n] = aa + aa * bb / empal;
if (bi[n] == 0. && *ncalc > n)
*ncalc = n - 1;
}
}
}
}
} else { /* argument out of range */
*ncalc = min0(*nb,0) - 1;
}
}