-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdnbinom.c
85 lines (77 loc) · 2.92 KB
/
dnbinom.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
/*
* AUTHOR
* Catherine Loader, [email protected].
* October 23, 2000 and Feb, 2001.
*
* dnbinom_mu(): Martin Maechler, June 2008
*
* Merge in to R:
* Copyright (C) 2000--2008, The R Core Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, a copy is available at
* http://www.r-project.org/Licenses/
*
*
* DESCRIPTION
*
* Computes the negative binomial distribution. For integer n,
* this is probability of x failures before the nth success in a
* sequence of Bernoulli trials. We do not enforce integer n, since
* the distribution is well defined for non-integers,
* and this can be useful for e.g. overdispersed discrete survival times.
*/
#include "nmath.h"
#include "dpq.h"
double dnbinom(double x, double size, double prob, int give_log)
{
double ans, p;
#ifdef IEEE_754
if (ISNAN(x) || ISNAN(size) || ISNAN(prob))
return x + size + prob;
#endif
if (prob <= 0 || prob > 1 || size < 0) ML_ERR_return_NAN;
R_D_nonint_check(x);
if (x < 0 || !R_FINITE(x)) return R_D__0;
x = R_D_forceint(x);
ans = dbinom_raw(size, x+size, prob, 1-prob, give_log);
p = ((double)size)/(size+x);
return((give_log) ? log(p) + ans : p * ans);
}
double dnbinom_mu(double x, double size, double mu, int give_log)
{
/* originally, just set prob := size / (size + mu) and called dbinom_raw(),
* but that suffers from cancellation when mu << size */
double ans, p;
#ifdef IEEE_754
if (ISNAN(x) || ISNAN(size) || ISNAN(mu))
return x + size + mu;
#endif
if (mu < 0 || size < 0) ML_ERR_return_NAN;
R_D_nonint_check(x);
if (x < 0 || !R_FINITE(x)) return R_D__0;
x = R_D_forceint(x);
if(x == 0)/* be accurate, both for n << mu, and n >> mu :*/
return R_D_exp(size * (size < mu ? log(size/(size+mu)) : log1p(- mu/(size+mu))));
if(x < 1e-10 * size) { /* don't use dbinom_raw() but MM's formula: */
/* FIXME --- 1e-8 shows problem; rather use algdiv() from ./toms708.c */
return R_D_exp(x * log(size*mu / (size+mu)) - mu - lgamma(x+1) +
log1p(x*(x-1)/(2*size)));
}
/* else: no unnecessary cancellation inside dbinom_raw, when
* x_ = size and n_ = x+size are so close that n_ - x_ loses accuracy
*/
ans = dbinom_raw(size, x+size, size/(size+mu), mu/(size+mu), give_log);
p = ((double)size)/(size+x);
return((give_log) ? log(p) + ans : p * ans);
}