-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdnchisq.c
101 lines (89 loc) · 2.82 KB
/
dnchisq.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
/*
* Mathlib : A C Library of Special Functions
* Copyright (C) 1998 Ross Ihaka
* Copyright (C) 2000-12 The R Core Team
* Copyright (C) 2004-8 The R Foundation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, a copy is available at
* http://www.r-project.org/Licenses/
*
* DESCRIPTION
*
* The density of the noncentral chi-squared distribution with "df"
* degrees of freedom and noncentrality parameter "ncp".
*/
#include "nmath.h"
#include "dpq.h"
double dnchisq(double x, double df, double ncp, int give_log)
{
const static double eps = 5e-15;
double i, ncp2, q, mid, dfmid, imax;
LDOUBLE sum, term;
#ifdef IEEE_754
if (ISNAN(x) || ISNAN(df) || ISNAN(ncp))
return x + df + ncp;
#endif
if (ncp < 0 || df <= 0) ML_ERR_return_NAN;
if (!R_FINITE(df) || !R_FINITE(ncp))
ML_ERR_return_NAN;
if(x < 0) return R_D__0;
if(x == 0 && df < 2.)
return ML_POSINF;
if(ncp == 0)
return dchisq(x, df, give_log);
if(x == ML_POSINF) return R_D__0;
ncp2 = 0.5 * ncp;
/* find max element of sum */
imax = ceil((-(2+df) +sqrt((2-df) * (2-df) + 4 * ncp * x))/4);
if (imax < 0) imax = 0;
if(R_FINITE(imax)) {
dfmid = df + 2 * imax;
mid = dpois_raw(imax, ncp2, FALSE) * dchisq(x, dfmid, FALSE);
} else /* imax = Inf */
mid = 0;
if(mid == 0) {
/* underflow to 0 -- maybe numerically correct; maybe can be more accurate,
* particularly when give_log = TRUE */
/* Use central-chisq approximation formula when appropriate;
* ((FIXME: the optimal cutoff also depends on (x,df); use always here? )) */
if(give_log || ncp > 1000.) {
double nl = df + ncp, ic = nl/(nl + ncp);/* = "1/(1+b)" Abramowitz & St.*/
return dchisq(x*ic, nl*ic, give_log);
} else
return R_D__0;
}
sum = mid;
/* errorbound := term * q / (1-q) now subsumed in while() / if() below: */
/* upper tail */
term = mid; df = dfmid; i = imax;
double x2 = x * ncp2;
do {
i++;
q = x2 / i / df;
df += 2;
term *= q;
sum += term;
} while (q >= 1 || term * q > (1-q)*eps || term > 1e-10*sum);
/* lower tail */
term = mid; df = dfmid; i = imax;
while (i) {
df -= 2;
q = i * df / x2;
i--;
term *= q;
sum += term;
if (q < 1 && term * q <= (1-q)*eps) break;
}
return R_D_val((double) sum);
}