-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgamma.c
221 lines (195 loc) · 6.23 KB
/
gamma.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
/*
* Mathlib : A C Library of Special Functions
* Copyright (C) 1998 Ross Ihaka
* Copyright (C) 2000-2001 The R Core Team
* Copyright (C) 2002-2004 The R Foundation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, a copy is available at
* http://www.r-project.org/Licenses/
*
* SYNOPSIS
*
* #include <Rmath.h>
* double gammafn(double x);
*
* DESCRIPTION
*
* This function computes the value of the gamma function.
*
* NOTES
*
* This function is a translation into C of a Fortran subroutine
* by W. Fullerton of Los Alamos Scientific Laboratory.
* (e.g. http://www.netlib.org/slatec/fnlib/gamma.f)
*
* The accuracy of this routine compares (very) favourably
* with those of the Sun Microsystems portable mathematical
* library.
*
* MM specialized the case of n! for n < 50 - for even better precision
*/
#include "nmath.h"
double gammafn(double x)
{
const static double gamcs[42] = {
+.8571195590989331421920062399942e-2,
+.4415381324841006757191315771652e-2,
+.5685043681599363378632664588789e-1,
-.4219835396418560501012500186624e-2,
+.1326808181212460220584006796352e-2,
-.1893024529798880432523947023886e-3,
+.3606925327441245256578082217225e-4,
-.6056761904460864218485548290365e-5,
+.1055829546302283344731823509093e-5,
-.1811967365542384048291855891166e-6,
+.3117724964715322277790254593169e-7,
-.5354219639019687140874081024347e-8,
+.9193275519859588946887786825940e-9,
-.1577941280288339761767423273953e-9,
+.2707980622934954543266540433089e-10,
-.4646818653825730144081661058933e-11,
+.7973350192007419656460767175359e-12,
-.1368078209830916025799499172309e-12,
+.2347319486563800657233471771688e-13,
-.4027432614949066932766570534699e-14,
+.6910051747372100912138336975257e-15,
-.1185584500221992907052387126192e-15,
+.2034148542496373955201026051932e-16,
-.3490054341717405849274012949108e-17,
+.5987993856485305567135051066026e-18,
-.1027378057872228074490069778431e-18,
+.1762702816060529824942759660748e-19,
-.3024320653735306260958772112042e-20,
+.5188914660218397839717833550506e-21,
-.8902770842456576692449251601066e-22,
+.1527474068493342602274596891306e-22,
-.2620731256187362900257328332799e-23,
+.4496464047830538670331046570666e-24,
-.7714712731336877911703901525333e-25,
+.1323635453126044036486572714666e-25,
-.2270999412942928816702313813333e-26,
+.3896418998003991449320816639999e-27,
-.6685198115125953327792127999999e-28,
+.1146998663140024384347613866666e-28,
-.1967938586345134677295103999999e-29,
+.3376448816585338090334890666666e-30,
-.5793070335782135784625493333333e-31
};
int i, n;
double y;
double sinpiy, value;
#ifdef NOMORE_FOR_THREADS
static int ngam = 0;
static double xmin = 0, xmax = 0., xsml = 0., dxrel = 0.;
/* Initialize machine dependent constants, the first time gamma() is called.
FIXME for threads ! */
if (ngam == 0) {
ngam = chebyshev_init(gamcs, 42, DBL_EPSILON/20);/*was .1*d1mach(3)*/
gammalims(&xmin, &xmax);/*-> ./gammalims.c */
xsml = exp(fmax2(log(DBL_MIN), -log(DBL_MAX)) + 0.01);
/* = exp(.01)*DBL_MIN = 2.247e-308 for IEEE */
dxrel = sqrt(DBL_EPSILON);/*was sqrt(d1mach(4)) */
}
#else
/* For IEEE double precision DBL_EPSILON = 2^-52 = 2.220446049250313e-16 :
* (xmin, xmax) are non-trivial, see ./gammalims.c
* xsml = exp(.01)*DBL_MIN
* dxrel = sqrt(DBL_EPSILON) = 2 ^ -26
*/
# define ngam 22
# define xmin -170.5674972726612
# define xmax 171.61447887182298
# define xsml 2.2474362225598545e-308
# define dxrel 1.490116119384765696e-8
#endif
if(ISNAN(x)) return x;
/* If the argument is exactly zero or a negative integer
* then return NaN. */
if (x == 0 || (x < 0 && x == (long)x)) {
ML_ERROR(ME_DOMAIN, "gammafn");
return ML_NAN;
}
y = fabs(x);
if (y <= 10) {
/* Compute gamma(x) for -10 <= x <= 10
* Reduce the interval and find gamma(1 + y) for 0 <= y < 1
* first of all. */
n = (int) x;
if(x < 0) --n;
y = x - n;/* n = floor(x) ==> y in [ 0, 1 ) */
--n;
value = chebyshev_eval(y * 2 - 1, gamcs, ngam) + .9375;
if (n == 0)
return value;/* x = 1.dddd = 1+y */
if (n < 0) {
/* compute gamma(x) for -10 <= x < 1 */
/* exact 0 or "-n" checked already above */
/* The answer is less than half precision */
/* because x too near a negative integer. */
if (x < -0.5 && fabs(x - (int)(x - 0.5) / x) < dxrel) {
ML_ERROR(ME_PRECISION, "gammafn");
}
/* The argument is so close to 0 that the result would overflow. */
if (y < xsml) {
ML_ERROR(ME_RANGE, "gammafn");
if(x > 0) return ML_POSINF;
else return ML_NEGINF;
}
n = -n;
for (i = 0; i < n; i++) {
value /= (x + i);
}
return value;
}
else {
/* gamma(x) for 2 <= x <= 10 */
for (i = 1; i <= n; i++) {
value *= (y + i);
}
return value;
}
}
else {
/* gamma(x) for y = |x| > 10. */
if (x > xmax) { /* Overflow */
ML_ERROR(ME_RANGE, "gammafn");
return ML_POSINF;
}
if (x < xmin) { /* Underflow */
ML_ERROR(ME_UNDERFLOW, "gammafn");
return 0.;
}
if(y <= 50 && y == (int)y) { /* compute (n - 1)! */
value = 1.;
for (i = 2; i < y; i++) value *= i;
}
else { /* normal case */
value = exp((y - 0.5) * log(y) - y + M_LN_SQRT_2PI +
((2*y == (int)2*y)? stirlerr(y) : lgammacor(y)));
}
if (x > 0)
return value;
if (fabs((x - (int)(x - 0.5))/x) < dxrel){
/* The answer is less than half precision because */
/* the argument is too near a negative integer. */
ML_ERROR(ME_PRECISION, "gammafn");
}
sinpiy = sin(M_PI * y);
if (sinpiy == 0) { /* Negative integer arg - overflow */
ML_ERROR(ME_RANGE, "gammafn");
return ML_POSINF;
}
return -M_PI / (y * sinpiy * value);
}
}