-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpnchisq.c
248 lines (222 loc) · 6.78 KB
/
pnchisq.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
/*
* Algorithm AS 275 Appl.Statist. (1992), vol.41, no.2
* original (C) 1992 Royal Statistical Society
*
* Computes the noncentral chi-squared distribution function with
* positive real degrees of freedom df and nonnegative noncentrality
* parameter ncp. pnchisq_raw is based on
*
* Ding, C. G. (1992)
* Algorithm AS275: Computing the non-central chi-squared
* distribution function. Appl.Statist., 41, 478-482.
* Other parts
* Copyright (C) 2000-2012 The R Core Team
* Copyright (C) 2003-2009 The R Foundation
*/
#include "nmath.h"
#include "dpq.h"
/*----------- DEBUGGING -------------
*
* make CFLAGS='-DDEBUG_pnch ....'
* -- Feb.6, 2000 (R pre0.99); M.Maechler: still have
* bad precision & non-convergence in some cases (x ~= f, both LARGE)
*/
#ifdef HAVE_LONG_DOUBLE
# define EXP expl
# define FABS fabsl
#else
# define EXP exp
# define FABS fabs
#endif
double pnchisq(double x, double df, double ncp, int lower_tail, int log_p)
{
double ans;
#ifdef IEEE_754
if (ISNAN(x) || ISNAN(df) || ISNAN(ncp))
return x + df + ncp;
if (!R_FINITE(df) || !R_FINITE(ncp))
ML_ERR_return_NAN;
#endif
if (df < 0. || ncp < 0.) ML_ERR_return_NAN;
ans = pnchisq_raw(x, df, ncp, 1e-12, 8*DBL_EPSILON, 1000000, lower_tail);
if(ncp >= 80) {
if(lower_tail) {
ans = fmin2(ans, 1.0); /* e.g., pchisq(555, 1.01, ncp = 80) */
} else { /* !lower_tail */
/* since we computed the other tail cancellation is likely */
if(ans < 1e-10) ML_ERROR(ME_PRECISION, "pnchisq");
ans = fmax2(ans, 0.0); /* Precaution PR#7099 */
}
}
if (!log_p) return ans;
/* if ans is near one, we can do better using the other tail */
if (ncp >= 80 || ans < 1 - 1e-8) return log(ans);
ans = pnchisq_raw(x, df, ncp, 1e-12, 8*DBL_EPSILON, 1000000, !lower_tail);
return log1p(-ans);
}
double attribute_hidden
pnchisq_raw(double x, double f, double theta,
double errmax, double reltol, int itrmax, Rboolean lower_tail)
{
double lam, x2, f2, term, bound, f_x_2n, f_2n;
double l_lam = -1., l_x = -1.; /* initialized for -Wall */
int n;
Rboolean lamSml, tSml, is_r, is_b, is_it;
LDOUBLE ans, u, v, t, lt, lu =-1;
static const double _dbl_min_exp = M_LN2 * DBL_MIN_EXP;
/*= -708.3964 for IEEE double precision */
if (x <= 0.) {
if(x == 0. && f == 0.)
return lower_tail ? exp(-0.5*theta) : -expm1(-0.5*theta);
/* x < 0 or {x==0, f > 0} */
return lower_tail ? 0. : 1.;
}
if(!R_FINITE(x)) return lower_tail ? 1. : 0.;
/* This is principally for use from qnchisq */
#ifndef MATHLIB_STANDALONE
R_CheckUserInterrupt();
#endif
if(theta < 80) { /* use 110 for Inf, as ppois(110, 80/2, lower.tail=FALSE) is 2e-20 */
LDOUBLE sum = 0, sum2 = 0, lambda = 0.5*theta,
pr = EXP(-lambda); // does this need a feature test?
double ans;
int i;
/* we need to renormalize here: the result could be very close to 1 */
for(i = 0; i < 110; pr *= lambda/++i) {
sum2 += pr;
sum += pr * pchisq(x, f+2*i, lower_tail, FALSE);
if (sum2 >= 1-1e-15) break;
}
ans = (double) (sum/sum2);
return ans;
}
#ifdef DEBUG_pnch
REprintf("pnchisq(x=%g, f=%g, theta=%g): ",x,f,theta);
#endif
lam = .5 * theta;
lamSml = (-lam < _dbl_min_exp);
if(lamSml) {
/* MATHLIB_ERROR(
"non centrality parameter (= %g) too large for current algorithm",
theta) */
u = 0;
lu = -lam;/* == ln(u) */
l_lam = log(lam);
} else {
u = exp(-lam);
}
/* evaluate the first term */
v = u;
x2 = .5 * x;
f2 = .5 * f;
f_x_2n = f - x;
#ifdef DEBUG_pnch
REprintf("-- v=exp(-th/2)=%g, x/2= %g, f/2= %g\n",v,x2,f2);
#endif
if(f2 * DBL_EPSILON > 0.125 && /* very large f and x ~= f: probably needs */
FABS(t = x2 - f2) < /* another algorithm anyway */
sqrt(DBL_EPSILON) * f2) {
/* evade cancellation error */
/* t = exp((1 - t)*(2 - t/(f2 + 1))) / sqrt(2*M_PI*(f2 + 1));*/
lt = (1 - t)*(2 - t/(f2 + 1)) - 0.5 * log(2*M_PI*(f2 + 1));
#ifdef DEBUG_pnch
REprintf(" (case I) ==> ");
#endif
}
else {
/* Usual case 2: careful not to overflow .. : */
lt = f2*log(x2) -x2 - lgammafn(f2 + 1);
}
#ifdef DEBUG_pnch
REprintf(" lt= %g", lt);
#endif
tSml = (lt < _dbl_min_exp);
if(tSml) {
if (x > f + theta + 5* sqrt( 2*(f + 2*theta))) {
/* x > E[X] + 5* sigma(X) */
return lower_tail ? 1. : 0.; /* FIXME: We could be more accurate than 0. */
} /* else */
l_x = log(x);
ans = term = 0.; t = 0;
}
else {
t = EXP(lt);
#ifdef DEBUG_pnch
REprintf(", t=exp(lt)= %g\n", t);
#endif
ans = term = (double) (v * t);
}
for (n = 1, f_2n = f + 2., f_x_2n += 2.; ; n++, f_2n += 2, f_x_2n += 2) {
#ifdef DEBUG_pnch
REprintf("\n _OL_: n=%d",n);
#endif
#ifndef MATHLIB_STANDALONE
if(n % 1000) R_CheckUserInterrupt();
#endif
/* f_2n === f + 2*n
* f_x_2n === f - x + 2*n > 0 <==> (f+2n) > x */
if (f_x_2n > 0) {
/* find the error bound and check for convergence */
bound = (double) (t * x / f_x_2n);
#ifdef DEBUG_pnch
REprintf("\n L10: n=%d; term= %g; bound= %g",n,term,bound);
#endif
is_r = is_it = FALSE;
/* convergence only if BOTH absolute and relative error < 'bnd' */
if (((is_b = (bound <= errmax)) &&
(is_r = (term <= reltol * ans))) || (is_it = (n > itrmax)))
{
#ifdef DEBUG_pnch
REprintf("BREAK n=%d %s; bound= %g %s, rel.err= %g %s\n",
n, (is_it ? "> itrmax" : ""),
bound, (is_b ? "<= errmax" : ""),
term/ans, (is_r ? "<= reltol" : ""));
#endif
break; /* out completely */
}
}
/* evaluate the next term of the */
/* expansion and then the partial sum */
if(lamSml) {
lu += l_lam - log(n); /* u = u* lam / n */
if(lu >= _dbl_min_exp) {
/* no underflow anymore ==> change regime */
#ifdef DEBUG_pnch
REprintf(" n=%d; nomore underflow in u = exp(lu) ==> change\n",
n);
#endif
v = u = EXP(lu); /* the first non-0 'u' */
lamSml = FALSE;
}
} else {
u *= lam / n;
v += u;
}
if(tSml) {
lt += l_x - log(f_2n);/* t <- t * (x / f2n) */
if(lt >= _dbl_min_exp) {
/* no underflow anymore ==> change regime */
#ifdef DEBUG_pnch
REprintf(" n=%d; nomore underflow in t = exp(lt) ==> change\n",
n);
#endif
t = EXP(lt); /* the first non-0 't' */
tSml = FALSE;
}
} else {
t *= x / f_2n;
}
if(!lamSml && !tSml) {
term = (double) (v * t);
ans += term;
}
} /* for(n ...) */
if (is_it) {
MATHLIB_WARNING2(_("pnchisq(x=%g, ..): not converged in %d iter."),
x, itrmax);
}
#ifdef DEBUG_pnch
REprintf("\n == L_End: n=%d; term= %g; bound=%g\n",n,term,bound);
#endif
return (double) (lower_tail ? ans : 1 - ans);
}