-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpnorm.c
280 lines (252 loc) · 7.62 KB
/
pnorm.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
/*
* Mathlib : A C Library of Special Functions
* Copyright (C) 1998 Ross Ihaka
* Copyright (C) 2000-2010 The R Core Team
* Copyright (C) 2003 The R Foundation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, a copy is available at
* http://www.r-project.org/Licenses/
*
* SYNOPSIS
*
* #include <Rmath.h>
*
* double pnorm5(double x, double mu, double sigma, int lower_tail,int log_p);
* {pnorm (..) is synonymous and preferred inside R}
*
* void pnorm_both(double x, double *cum, double *ccum,
* int i_tail, int log_p);
*
* DESCRIPTION
*
* The main computation evaluates near-minimax approximations derived
* from those in "Rational Chebyshev approximations for the error
* function" by W. J. Cody, Math. Comp., 1969, 631-637. This
* transportable program uses rational functions that theoretically
* approximate the normal distribution function to at least 18
* significant decimal digits. The accuracy achieved depends on the
* arithmetic system, the compiler, the intrinsic functions, and
* proper selection of the machine-dependent constants.
*
* REFERENCE
*
* Cody, W. D. (1993).
* ALGORITHM 715: SPECFUN - A Portable FORTRAN Package of
* Special Function Routines and Test Drivers".
* ACM Transactions on Mathematical Software. 19, 22-32.
*
* EXTENSIONS
*
* The "_both" , lower, upper, and log_p variants were added by
* Martin Maechler, Jan.2000;
* as well as log1p() and similar improvements later on.
*
* James M. Rath contributed bug report PR#699 and patches correcting SIXTEN
* and if() clauses {with a bug: "|| instead of &&" -> PR #2883) more in line
* with the original Cody code.
*/
#include "nmath.h"
#include "dpq.h"
double pnorm5(double x, double mu, double sigma, int lower_tail, int log_p)
{
double p, cp;
/* Note: The structure of these checks has been carefully thought through.
* For example, if x == mu and sigma == 0, we get the correct answer 1.
*/
#ifdef IEEE_754
if(ISNAN(x) || ISNAN(mu) || ISNAN(sigma))
return x + mu + sigma;
#endif
if(!R_FINITE(x) && mu == x) return ML_NAN;/* x-mu is NaN */
if (sigma <= 0) {
if(sigma < 0) ML_ERR_return_NAN;
/* sigma = 0 : */
return (x < mu) ? R_DT_0 : R_DT_1;
}
p = (x - mu) / sigma;
if(!R_FINITE(p))
return (x < mu) ? R_DT_0 : R_DT_1;
x = p;
pnorm_both(x, &p, &cp, (lower_tail ? 0 : 1), log_p);
return(lower_tail ? p : cp);
}
#define SIXTEN 16 /* Cutoff allowing exact "*" and "/" */
void pnorm_both(double x, double *cum, double *ccum, int i_tail, int log_p)
{
/* i_tail in {0,1,2} means: "lower", "upper", or "both" :
if(lower) return *cum := P[X <= x]
if(upper) return *ccum := P[X > x] = 1 - P[X <= x]
*/
const static double a[5] = {
2.2352520354606839287,
161.02823106855587881,
1067.6894854603709582,
18154.981253343561249,
0.065682337918207449113
};
const static double b[4] = {
47.20258190468824187,
976.09855173777669322,
10260.932208618978205,
45507.789335026729956
};
const static double c[9] = {
0.39894151208813466764,
8.8831497943883759412,
93.506656132177855979,
597.27027639480026226,
2494.5375852903726711,
6848.1904505362823326,
11602.651437647350124,
9842.7148383839780218,
1.0765576773720192317e-8
};
const static double d[8] = {
22.266688044328115691,
235.38790178262499861,
1519.377599407554805,
6485.558298266760755,
18615.571640885098091,
34900.952721145977266,
38912.003286093271411,
19685.429676859990727
};
const static double p[6] = {
0.21589853405795699,
0.1274011611602473639,
0.022235277870649807,
0.001421619193227893466,
2.9112874951168792e-5,
0.02307344176494017303
};
const static double q[5] = {
1.28426009614491121,
0.468238212480865118,
0.0659881378689285515,
0.00378239633202758244,
7.29751555083966205e-5
};
double xden, xnum, temp, del, eps, xsq, y;
#ifdef NO_DENORMS
double min = DBL_MIN;
#endif
int i, lower, upper;
#ifdef IEEE_754
if(ISNAN(x)) { *cum = *ccum = x; return; }
#endif
/* Consider changing these : */
eps = DBL_EPSILON * 0.5;
/* i_tail in {0,1,2} =^= {lower, upper, both} */
lower = i_tail != 1;
upper = i_tail != 0;
y = fabs(x);
if (y <= 0.67448975) { /* qnorm(3/4) = .6744.... -- earlier had 0.66291 */
if (y > eps) {
xsq = x * x;
xnum = a[4] * xsq;
xden = xsq;
for (i = 0; i < 3; ++i) {
xnum = (xnum + a[i]) * xsq;
xden = (xden + b[i]) * xsq;
}
} else xnum = xden = 0.0;
temp = x * (xnum + a[3]) / (xden + b[3]);
if(lower) *cum = 0.5 + temp;
if(upper) *ccum = 0.5 - temp;
if(log_p) {
if(lower) *cum = log(*cum);
if(upper) *ccum = log(*ccum);
}
}
else if (y <= M_SQRT_32) {
/* Evaluate pnorm for 0.674.. = qnorm(3/4) < |x| <= sqrt(32) ~= 5.657 */
xnum = c[8] * y;
xden = y;
for (i = 0; i < 7; ++i) {
xnum = (xnum + c[i]) * y;
xden = (xden + d[i]) * y;
}
temp = (xnum + c[7]) / (xden + d[7]);
#define do_del(X) \
xsq = trunc(X * SIXTEN) / SIXTEN; \
del = (X - xsq) * (X + xsq); \
if(log_p) { \
*cum = (-xsq * xsq * 0.5) + (-del * 0.5) + log(temp); \
if((lower && x > 0.) || (upper && x <= 0.)) \
*ccum = log1p(-exp(-xsq * xsq * 0.5) * \
exp(-del * 0.5) * temp); \
} \
else { \
*cum = exp(-xsq * xsq * 0.5) * exp(-del * 0.5) * temp; \
*ccum = 1.0 - *cum; \
}
#define swap_tail \
if (x > 0.) {/* swap ccum <--> cum */ \
temp = *cum; if(lower) *cum = *ccum; *ccum = temp; \
}
do_del(y);
swap_tail;
}
/* else |x| > sqrt(32) = 5.657 :
* the next two case differentiations were really for lower=T, log=F
* Particularly *not* for log_p !
* Cody had (-37.5193 < x && x < 8.2924) ; R originally had y < 50
*
* Note that we do want symmetry(0), lower/upper -> hence use y
*/
else if((log_p && y < 1e170) /* avoid underflow below */
/* ^^^^^ MM FIXME: can speedup for log_p and much larger |x| !
* Then, make use of Abramowitz & Stegun, 26.2.13, something like
xsq = x*x;
if(xsq * DBL_EPSILON < 1.)
del = (1. - (1. - 5./(xsq+6.)) / (xsq+4.)) / (xsq+2.);
else
del = 0.;
*cum = -.5*xsq - M_LN_SQRT_2PI - log(x) + log1p(-del);
*ccum = log1p(-exp(*cum)); /.* ~ log(1) = 0 *./
swap_tail;
[Yes, but xsq might be infinite.]
*/
|| (lower && -37.5193 < x && x < 8.2924)
|| (upper && -8.2924 < x && x < 37.5193)
) {
/* Evaluate pnorm for x in (-37.5, -5.657) union (5.657, 37.5) */
xsq = 1.0 / (x * x); /* (1./x)*(1./x) might be better */
xnum = p[5] * xsq;
xden = xsq;
for (i = 0; i < 4; ++i) {
xnum = (xnum + p[i]) * xsq;
xden = (xden + q[i]) * xsq;
}
temp = xsq * (xnum + p[4]) / (xden + q[4]);
temp = (M_1_SQRT_2PI - temp) / y;
do_del(x);
swap_tail;
} else { /* large x such that probs are 0 or 1 */
if(x > 0) { *cum = R_D__1; *ccum = R_D__0; }
else { *cum = R_D__0; *ccum = R_D__1; }
}
#ifdef NO_DENORMS
/* do not return "denormalized" -- we do in R */
if(log_p) {
if(*cum > -min) *cum = -0.;
if(*ccum > -min)*ccum = -0.;
}
else {
if(*cum < min) *cum = 0.;
if(*ccum < min) *ccum = 0.;
}
#endif
return;
}