-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqcauchy.c
62 lines (58 loc) · 1.92 KB
/
qcauchy.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
/*
* Mathlib : A C Library of Special Functions
* Copyright (C) 1998 Ross Ihaka
* Copyright (C) 2000 The R Core Team
* Copyright (C) 2005-6 The R Foundation
*
* This version is based on a suggestion by Morten Welinder.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* http://www.gnu.org/copyleft/gpl.html.
*
* DESCRIPTION
*
* The quantile function of the Cauchy distribution.
*/
#include "nmath.h"
#include "dpq.h"
double qcauchy(double p, double location, double scale,
int lower_tail, int log_p)
{
#ifdef IEEE_754
if (ISNAN(p) || ISNAN(location) || ISNAN(scale))
return p + location + scale;
#endif
R_Q_P01_check(p);
if (scale <= 0 || !R_FINITE(scale)) {
if (scale == 0) return location;
/* else */ ML_ERR_return_NAN;
}
#define my_INF location + (lower_tail ? scale : -scale) * ML_POSINF
if (log_p) {
if (p > -1) {
/* when ep := exp(p),
* tan(pi*ep)= -tan(pi*(-ep))= -tan(pi*(-ep)+pi) = -tan(pi*(1-ep)) =
* = -tan(pi*(-expm1(p))
* for p ~ 0, exp(p) ~ 1, tan(~0) may be better than tan(~pi).
*/
if (p == 0.) /* needed, since 1/tan(-0) = -Inf for some arch. */
return my_INF;
lower_tail = !lower_tail;
p = -expm1(p);
} else
p = exp(p);
} else if (p == 1.)
return my_INF;
return location + (lower_tail ? -scale : scale) / tan(M_PI * p);
/* -1/tan(pi * p) = -cot(pi * p) = tan(pi * (p - 1/2)) */
}