-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqnbinom.c
127 lines (113 loc) · 3.72 KB
/
qnbinom.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
/*
* Mathlib : A C Library of Special Functions
* Copyright (C) 1998 Ross Ihaka
* Copyright (C) 2000-2008 The R Core Team
* Copyright (C) 2005 The R Foundation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, a copy is available at
* http://www.r-project.org/Licenses/
*
* SYNOPSIS
*
* #include <Rmath.h>
* double qnbinom(double p, double size, double prob,
* int lower_tail, int log_p)
*
* DESCRIPTION
*
* The quantile function of the negative binomial distribution.
*
* NOTES
*
* x = the number of failures before the n-th success
*
* METHOD
*
* Uses the Cornish-Fisher Expansion to include a skewness
* correction to a normal approximation. This gives an
* initial value which never seems to be off by more than
* 1 or 2. A search is then conducted of values close to
* this initial start point.
*/
#include "nmath.h"
#include "dpq.h"
static double
do_search(double y, double *z, double p, double n, double pr, double incr)
{
if(*z >= p) {
/* search to the left */
for(;;) {
if(y == 0 ||
(*z = pnbinom(y - incr, n, pr, /*l._t.*/TRUE, /*log_p*/FALSE)) < p)
return y;
y = fmax2(0, y - incr);
}
}
else { /* search to the right */
for(;;) {
y = y + incr;
if((*z = pnbinom(y, n, pr, /*l._t.*/TRUE, /*log_p*/FALSE)) >= p)
return y;
}
}
}
double qnbinom(double p, double size, double prob, int lower_tail, int log_p)
{
double P, Q, mu, sigma, gamma, z, y;
#ifdef IEEE_754
if (ISNAN(p) || ISNAN(size) || ISNAN(prob))
return p + size + prob;
#endif
if (prob <= 0 || prob > 1 || size <= 0) ML_ERR_return_NAN;
/* FIXME: size = 0 is well defined ! */
if (prob == 1) return 0;
R_Q_P01_boundaries(p, 0, ML_POSINF);
Q = 1.0 / prob;
P = (1.0 - prob) * Q;
mu = size * P;
sigma = sqrt(size * P * Q);
gamma = (Q + P)/sigma;
/* Note : "same" code in qpois.c, qbinom.c, qnbinom.c --
* FIXME: This is far from optimal [cancellation for p ~= 1, etc]: */
if(!lower_tail || log_p) {
p = R_DT_qIv(p); /* need check again (cancellation!): */
if (p == R_DT_0) return 0;
if (p == R_DT_1) return ML_POSINF;
}
/* temporary hack --- FIXME --- */
if (p + 1.01*DBL_EPSILON >= 1.) return ML_POSINF;
/* y := approx.value (Cornish-Fisher expansion) : */
z = qnorm(p, 0., 1., /*lower_tail*/TRUE, /*log_p*/FALSE);
y = floor(mu + sigma * (z + gamma * (z*z - 1) / 6) + 0.5);
z = pnbinom(y, size, prob, /*lower_tail*/TRUE, /*log_p*/FALSE);
/* fuzz to ensure left continuity: */
p *= 1 - 64*DBL_EPSILON;
/* If the C-F value is not too large a simple search is OK */
if(y < 1e5) return do_search(y, &z, p, size, prob, 1);
/* Otherwise be a bit cleverer in the search */
{
double incr = floor(y * 0.001), oldincr;
do {
oldincr = incr;
y = do_search(y, &z, p, size, prob, incr);
incr = fmax2(1, floor(incr/100));
} while(oldincr > 1 && incr > y*1e-15);
return y;
}
}
double qnbinom_mu(double p, double size, double mu, int lower_tail, int log_p)
{
/* FIXME! Implement properly!! (not losing accuracy for very large size (prob ~= 1)*/
return qnbinom(p, size, /* prob = */ size/(size+mu), lower_tail, log_p);
}