-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqpois.c
108 lines (97 loc) · 3.17 KB
/
qpois.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
/*
* Mathlib : A C Library of Special Functions
* Copyright (C) 1998 Ross Ihaka
* Copyright (C) 2000-2009 The R Core Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, a copy is available at
* http://www.r-project.org/Licenses/
*
* DESCRIPTION
*
* The quantile function of the Poisson distribution.
*
* METHOD
*
* Uses the Cornish-Fisher Expansion to include a skewness
* correction to a normal approximation. This gives an
* initial value which never seems to be off by more than
* 1 or 2. A search is then conducted of values close to
* this initial start point.
*/
#include "nmath.h"
#include "dpq.h"
static double
do_search(double y, double *z, double p, double lambda, double incr)
{
if(*z >= p) {
/* search to the left */
for(;;) {
if(y == 0 ||
(*z = ppois(y - incr, lambda, /*l._t.*/TRUE, /*log_p*/FALSE)) < p)
return y;
y = fmax2(0, y - incr);
}
}
else { /* search to the right */
for(;;) {
y = y + incr;
if((*z = ppois(y, lambda, /*l._t.*/TRUE, /*log_p*/FALSE)) >= p)
return y;
}
}
}
double qpois(double p, double lambda, int lower_tail, int log_p)
{
double mu, sigma, gamma, z, y;
#ifdef IEEE_754
if (ISNAN(p) || ISNAN(lambda))
return p + lambda;
#endif
if(!R_FINITE(lambda))
ML_ERR_return_NAN;
if(lambda < 0) ML_ERR_return_NAN;
if(lambda == 0) return 0;
R_Q_P01_boundaries(p, 0, ML_POSINF);
mu = lambda;
sigma = sqrt(lambda);
/* gamma = sigma; PR#8058 should be kurtosis which is mu^-0.5 */
gamma = 1.0/sigma;
/* Note : "same" code in qpois.c, qbinom.c, qnbinom.c --
* FIXME: This is far from optimal [cancellation for p ~= 1, etc]: */
if(!lower_tail || log_p) {
p = R_DT_qIv(p); /* need check again (cancellation!): */
if (p == 0.) return 0;
if (p == 1.) return ML_POSINF;
}
/* temporary hack --- FIXME --- */
if (p + 1.01*DBL_EPSILON >= 1.) return ML_POSINF;
/* y := approx.value (Cornish-Fisher expansion) : */
z = qnorm(p, 0., 1., /*lower_tail*/TRUE, /*log_p*/FALSE);
y = floor(mu + sigma * (z + gamma * (z*z - 1) / 6) + 0.5);
z = ppois(y, lambda, /*lower_tail*/TRUE, /*log_p*/FALSE);
/* fuzz to ensure left continuity; 1 - 1e-7 may lose too much : */
p *= 1 - 64*DBL_EPSILON;
/* If the mean is not too large a simple search is OK */
if(lambda < 1e5) return do_search(y, &z, p, lambda, 1);
/* Otherwise be a bit cleverer in the search */
{
double incr = floor(y * 0.001), oldincr;
do {
oldincr = incr;
y = do_search(y, &z, p, lambda, incr);
incr = fmax2(1, floor(incr/100));
} while(oldincr > 1 && incr > lambda*1e-15);
return y;
}
}