-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqt.c
204 lines (178 loc) · 6.26 KB
/
qt.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
/*
* Mathlib : A C Library of Special Functions
* Copyright (C) 1998 Ross Ihaka
* Copyright (C) 2000-2013 The R Core Team
* Copyright (C) 2003-2013 The R Foundation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, a copy is available at
* http://www.r-project.org/Licenses/
*
* DESCRIPTION
*
* The "Student" t distribution quantile function.
*
* NOTES
*
* This is a C translation of the Fortran routine given in:
* Hill, G.W (1970) "Algorithm 396: Student's t-quantiles"
* CACM 13(10), 619-620.
*
* Supplemented by inversion for 0 < ndf < 1.
*
* ADDITIONS:
* - lower_tail, log_p
* - using expm1() : takes care of Lozy (1979) "Remark on Algo.", TOMS
* - Apply 2-term Taylor expansion as in
* Hill, G.W (1981) "Remark on Algo.396", ACM TOMS 7, 250-1
* - Improve the formula decision for 1 < df < 2
*/
#include "nmath.h"
#include "dpq.h"
double qt(double p, double ndf, int lower_tail, int log_p)
{
const static double eps = 1.e-12;
double P, q;
#ifdef IEEE_754
if (ISNAN(p) || ISNAN(ndf))
return p + ndf;
#endif
R_Q_P01_boundaries(p, ML_NEGINF, ML_POSINF);
if (ndf <= 0) ML_ERR_return_NAN;
if (ndf < 1) { /* based on qnt */
const static double accu = 1e-13;
const static double Eps = 1e-11; /* must be > accu */
double ux, lx, nx, pp;
int iter = 0;
p = R_DT_qIv(p);
/* Invert pt(.) :
* 1. finding an upper and lower bound */
if(p > 1 - DBL_EPSILON) return ML_POSINF;
pp = fmin2(1 - DBL_EPSILON, p * (1 + Eps));
for(ux = 1.; ux < DBL_MAX && pt(ux, ndf, TRUE, FALSE) < pp; ux *= 2);
pp = p * (1 - Eps);
for(lx =-1.; lx > -DBL_MAX && pt(lx, ndf, TRUE, FALSE) > pp; lx *= 2);
/* 2. interval (lx,ux) halving
regula falsi failed on qt(0.1, 0.1)
*/
do {
nx = 0.5 * (lx + ux);
if (pt(nx, ndf, TRUE, FALSE) > p) ux = nx; else lx = nx;
} while ((ux - lx) / fabs(nx) > accu && ++iter < 1000);
if(iter >= 1000) ML_ERROR(ME_PRECISION, "qt");
return 0.5 * (lx + ux);
}
/* Old comment:
* FIXME: "This test should depend on ndf AND p !!
* ----- and in fact should be replaced by
* something like Abramowitz & Stegun 26.7.5 (p.949)"
*
* That would say that if the qnorm value is x then
* the result is about x + (x^3+x)/4df + (5x^5+16x^3+3x)/96df^2
* The differences are tiny even if x ~ 1e5, and qnorm is not
* that accurate in the extreme tails.
*/
if (ndf > 1e20) return qnorm(p, 0., 1., lower_tail, log_p);
P = R_D_qIv(p); /* if exp(p) underflows, we fix below */
Rboolean neg = (!lower_tail || P < 0.5) && (lower_tail || P > 0.5),
is_neg_lower = (lower_tail == neg); /* both TRUE or FALSE == !xor */
if(neg)
P = 2 * (log_p ? (lower_tail ? P : -expm1(p)) : R_D_Lval(p));
else
P = 2 * (log_p ? (lower_tail ? -expm1(p) : P) : R_D_Cval(p));
/* 0 <= P <= 1 ; P = 2*min(P', 1 - P') in all cases */
if (fabs(ndf - 2) < eps) { /* df ~= 2 */
if(P > DBL_MIN) {
if(3* P < DBL_EPSILON) /* P ~= 0 */
q = 1 / sqrt(P);
else if (P > 0.9) /* P ~= 1 */
q = (1 - P) * sqrt(2 /(P * (2 - P)));
else /* eps/3 <= P <= 0.9 */
q = sqrt(2 / (P * (2 - P)) - 2);
}
else { /* P << 1, q = 1/sqrt(P) = ... */
if(log_p)
q = is_neg_lower ? exp(- p/2) / M_SQRT2 : 1/sqrt(-expm1(p));
else
q = ML_POSINF;
}
}
else if (ndf < 1 + eps) { /* df ~= 1 (df < 1 excluded above): Cauchy */
if(P > 0)
q = 1/tan(P * M_PI_2);/* == - tan((P+1) * M_PI_2) -- suffers for P ~= 0 */
else { /* P = 0, but maybe = 2*exp(p) ! */
if(log_p) /* 1/tan(e) ~ 1/e */
q = is_neg_lower ? M_1_PI * exp(-p) : -1./(M_PI * expm1(p));
else
q = ML_POSINF;
}
}
else { /*-- usual case; including, e.g., df = 1.1 */
double x = 0., y, log_P2 = 0./* -Wall */,
a = 1 / (ndf - 0.5),
b = 48 / (a * a),
c = ((20700 * a / b - 98) * a - 16) * a + 96.36,
d = ((94.5 / (b + c) - 3) / b + 1) * sqrt(a * M_PI_2) * ndf;
Rboolean P_ok1 = P > DBL_MIN || !log_p, P_ok = P_ok1;
if(P_ok1) {
y = pow(d * P, 2 / ndf);
P_ok = (y >= DBL_EPSILON);
}
if(!P_ok) {// log.p && P very.small || (d*P)^(2/df) =: y < eps_c
log_P2 = is_neg_lower ? R_D_log(p) : R_D_LExp(p); /* == log(P / 2) */
x = (log(d) + M_LN2 + log_P2) / ndf;
y = exp(2 * x);
}
if ((ndf < 2.1 && P > 0.5) || y > 0.05 + a) { /* P > P0(df) */
/* Asymptotic inverse expansion about normal */
if(P_ok)
x = qnorm(0.5 * P, 0., 1., /*lower_tail*/TRUE, /*log_p*/FALSE);
else /* log_p && P underflowed */
x = qnorm(log_P2, 0., 1., lower_tail, /*log_p*/ TRUE);
y = x * x;
if (ndf < 5)
c += 0.3 * (ndf - 4.5) * (x + 0.6);
c = (((0.05 * d * x - 5) * x - 7) * x - 2) * x + b + c;
y = (((((0.4 * y + 6.3) * y + 36) * y + 94.5) / c
- y - 3) / b + 1) * x;
y = expm1(a * y * y);
q = sqrt(ndf * y);
} else if(!P_ok && x < - M_LN2 * DBL_MANT_DIG) {/* 0.5* log(DBL_EPSILON) */
/* y above might have underflown */
q = sqrt(ndf) * exp(-x);
}
else { /* re-use 'y' from above */
y = ((1 / (((ndf + 6) / (ndf * y) - 0.089 * d - 0.822)
* (ndf + 2) * 3) + 0.5 / (ndf + 4))
* y - 1) * (ndf + 1) / (ndf + 2) + 1 / y;
q = sqrt(ndf * y);
}
/* Now apply 2-term Taylor expansion improvement (1-term = Newton):
* as by Hill (1981) [ref.above] */
/* FIXME: This can be far from optimal when log_p = TRUE
* but is still needed, e.g. for qt(-2, df=1.01, log=TRUE).
* Probably also improvable when lower_tail = FALSE */
if(P_ok1) {
int it=0;
while(it++ < 10 && (y = dt(q, ndf, FALSE)) > 0 &&
R_FINITE(x = (pt(q, ndf, FALSE, FALSE) - P/2) / y) &&
fabs(x) > 1e-14*fabs(q))
/* Newton (=Taylor 1 term):
* q += x;
* Taylor 2-term : */
q += x * (1. + x * q * (ndf + 1) / (2 * (q * q + ndf)));
}
}
if(neg) q = -q;
return q;
}