diff --git a/MIL/C05_Elementary_Number_Theory/S04_More_Induction.lean b/MIL/C05_Elementary_Number_Theory/S04_More_Induction.lean index f83cd70..a03b896 100644 --- a/MIL/C05_Elementary_Number_Theory/S04_More_Induction.lean +++ b/MIL/C05_Elementary_Number_Theory/S04_More_Induction.lean @@ -226,8 +226,6 @@ example (n : ℕ): (fib n) ^ 2 + (fib (n + 1)) ^ 2 = fib (2 * n + 1) := by sorry example (n : ℕ): (fib n) ^ 2 + (fib (n + 1)) ^ 2 = fib (2 * n + 1) := by rw [two_mul, fib_add, pow_two, pow_two] BOTH: -/ -example (n : ℕ): (fib n) ^ 2 + (fib (n + 1)) ^ 2 = fib (2 * n + 1) := by - rw [two_mul, fib_add, pow_two, pow_two] /- TEXT: Lean's mechanisms for defining recursive functions are flexible enough to allow arbitrary