forked from adoresever/DataGraphX_Learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathknowledge_graph_utils.py
282 lines (243 loc) · 10.7 KB
/
knowledge_graph_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
# knowledge_graph_utils.py
import networkx as nx
import plotly.graph_objects as go
from typing import Dict, Any
import json
from data_persistence_utils import get_cache_dir
import os
import logging
import colorsys
import re
import jieba
import jieba.analyse
def load_graph_from_json(file_hash: str) -> nx.Graph:
cache_file = os.path.join(get_cache_dir(), f"{file_hash}_graph_data.json")
print(f"Attempting to load graph data from: {cache_file}")
if os.path.exists(cache_file):
try:
with open(cache_file, 'r', encoding='utf-8') as f:
data = json.load(f)
G = nx.Graph()
# 添加节点
for node in data['nodes']:
G.add_node(node['id'], type=node['type'], **node['properties'])
# 修改关系处理部分
for rel in data['relationships']:
try:
# 直接使用 source 和 target
source_id = rel['source'] if isinstance(rel['source'], str) else str(rel['source'])
target_id = rel['target'] if isinstance(rel['target'], str) else str(rel['target'])
# 如果还是包含 id 标记,则尝试提取
if "id='" in source_id:
source_id = re.search(r"id='([^']*)'", source_id)
source_id = source_id.group(1) if source_id else source_id
if "id='" in target_id:
target_id = re.search(r"id='([^']*)'", target_id)
target_id = target_id.group(1) if target_id else target_id
# 添加边
G.add_edge(source_id, target_id, label=rel['type'], **rel['properties'])
except Exception as e:
print(f"Warning: Could not add relationship: {rel}. Error: {str(e)}")
continue
print(f"Successfully loaded graph with {G.number_of_nodes()} nodes and {G.number_of_edges()} edges")
return G
except Exception as e:
print(f"Error loading graph data: {str(e)}")
logging.exception("Error details:")
else:
print(f"File not found: {cache_file}")
return None
def find_relevant_subgraph(G: nx.Graph, question: str, max_depth: int = 2) -> nx.Graph:
# 1. 对问题进行分词
keywords = jieba.lcut(question)
key_terms = [word for word in keywords if len(word) >= 2] # 只保留长度>=2的词
# 2. 找到相关节点
relevant_nodes = []
for node in G.nodes:
node_text = G.nodes[node].get('text', '').lower()
if any(term.lower() in node_text for term in key_terms):
relevant_nodes.append(node)
# 3. 构建子图
subgraph = nx.Graph()
for start_node in relevant_nodes:
nodes_to_explore = [(start_node, 0)]
explored = set()
while nodes_to_explore:
current_node, depth = nodes_to_explore.pop(0)
if current_node in explored or depth > max_depth:
continue
explored.add(current_node)
if not subgraph.has_node(current_node):
subgraph.add_node(current_node, **G.nodes[current_node])
# 探索相邻节点
for neighbor in G.neighbors(current_node):
if neighbor not in explored and depth < max_depth:
if not subgraph.has_node(neighbor):
subgraph.add_node(neighbor, **G.nodes[neighbor])
subgraph.add_edge(current_node, neighbor, **G.edges[current_node, neighbor])
nodes_to_explore.append((neighbor, depth + 1))
# 4. 如果子图太小,扩展搜索
if subgraph.number_of_nodes() < 3:
for node in list(subgraph.nodes):
for neighbor in G.neighbors(node):
if not subgraph.has_node(neighbor):
subgraph.add_node(neighbor, **G.nodes[neighbor])
subgraph.add_edge(node, neighbor, **G.edges[node, neighbor])
return subgraph
def prepare_graph_data(graph, cypher_query):
results = graph.run(cypher_query)
G = nx.Graph()
print("Debug: Cypher Query:", cypher_query)
for i, record in enumerate(results):
print(f"Debug: Record {i}:", dict(record))
start_node = record['n']
end_node = record.get('related')
relationship = record.get('r')
start_id = start_node.identity
# 添加起始节点
if not G.has_node(start_id):
G.add_node(start_id,
label=list(start_node.labels)[0] if start_node.labels else 'Unknown',
title=start_node.get('text', '')[:50])
# 如果有相关节点和关系,添加它们
if end_node and relationship:
end_id = end_node.identity
if not G.has_node(end_id):
G.add_node(end_id,
label=list(end_node.labels)[0] if end_node.labels else 'Unknown',
title=end_node.get('text', '')[:50])
G.add_edge(start_id, end_id, label=type(relationship).__name__)
print(f"Debug: Graph has {G.number_of_nodes()} nodes and {G.number_of_edges()} edges")
return G
def generate_colors(n):
HSV_tuples = [(x * 1.0 / n, 0.7, 0.7) for x in range(n)]
return ['rgb' + str(tuple(int(x * 255) for x in colorsys.hsv_to_rgb(*hsv))) for hsv in HSV_tuples]
def create_knowledge_graph(G: nx.Graph) -> go.Figure:
# 使用 Fruchterman-Reingold 布局算法
pos = nx.spring_layout(G, k=0.5, iterations=50)
# 生成节点类型的颜色映射
node_types = set(nx.get_node_attributes(G, 'type').values())
if not node_types:
# 如果没有节点类型,使用默认颜色
default_color = '#888888'
color_map = {'default': default_color}
else:
colors = generate_colors(len(node_types))
color_map = dict(zip(node_types, colors))
default_color = colors[0] if colors else '#888888'
# 边信息
edge_x, edge_y, edge_text = [], [], []
for edge in G.edges(data=True):
x0, y0 = pos[edge[0]]
x1, y1 = pos[edge[1]]
edge_x.extend([x0, x1, None])
edge_y.extend([y0, y1, None])
edge_text.append(edge[2].get('label', ''))
edge_trace = go.Scatter(
x=edge_x, y=edge_y,
line=dict(width=0.5, color='#888'),
hoverinfo='text',
mode='lines+text',
text=edge_text,
textposition='middle center'
)
# 节点信息
node_x, node_y, node_text, node_color, node_size = [], [], [], [], []
for node, data in G.nodes(data=True):
x, y = pos[node]
node_x.append(x)
node_y.append(y)
node_type = data.get('type', 'Unknown')
node_text.append(f"{node}<br>Type: {node_type}")
node_color.append(color_map.get(node_type, default_color))
# 根据节点的连接数调整大小
node_size.append(10 + len(list(G.neighbors(node))))
node_trace = go.Scatter(
x=node_x, y=node_y,
mode='markers+text',
hoverinfo='text',
marker=dict(
showscale=True,
colorscale=[[i/(len(color_map)-1), color] for i, color in enumerate(color_map.values())] if len(color_map) > 1 else [[0, default_color], [1, default_color]],
size=node_size,
color=node_color,
line_width=2
),
text=[node for node in G.nodes()],
textposition="top center",
hovertext=node_text
)
# 创建图例
legend_traces = []
for node_type, color in color_map.items():
legend_traces.append(
go.Scatter(
x=[None], y=[None],
mode='markers',
marker=dict(size=10, color=color),
legendgroup=node_type,
showlegend=True,
name=node_type
)
)
# 创建图形
fig = go.Figure(data=[edge_trace, node_trace] + legend_traces,
layout=go.Layout(
title=dict(
text='Knowledge Graph',
font=dict(size=16)
),
showlegend=True,
hovermode='closest',
clickmode='event+select',
margin=dict(b=20,l=5,r=5,t=40),
annotations=[dict(
text="",
showarrow=False,
xref="paper", yref="paper",
x=0.005, y=-0.002
)],
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
legend=dict(
yanchor="top",
y=0.99,
xanchor="left",
x=0.01
)
))
return fig
def build_dynamic_cypher_query(relevant_info: Dict[str, Any], question: str) -> str:
nodes = relevant_info["nodes"]
relations = relevant_info["relations"]
# 使用APOC进行模糊匹配
find_nodes_query = f"""
MATCH (n)
WHERE apoc.text.fuzzyMatch(n.text, '{question}') > 0.5
WITH n
ORDER BY apoc.text.fuzzyMatch(n.text, '{question}') DESC
LIMIT 5
"""
# 第二步:探索这些节点的关系
explore_relations_query = """
OPTIONAL MATCH (n)-[r]-(related)
WHERE NOT (related:Document) // 排除 Document 类型的节点,因为它们可能是重复的内容
"""
# 过滤条件(如果需要的话)
filter_conditions = []
if nodes:
node_filter = " OR ".join([f"'{node}' IN labels(n) OR '{node}' IN labels(related)" for node in nodes])
filter_conditions.append(f"({node_filter})")
if relations:
relation_filter = " OR ".join([f"type(r) = '{rel}'" for rel in relations])
filter_conditions.append(f"({relation_filter})")
filter_query = " AND ".join(filter_conditions)
if filter_query:
filter_query = f"WHERE {filter_query}"
# 返回结果
return_query = """
RETURN DISTINCT n, r, related
LIMIT 50
"""
full_query = find_nodes_query + explore_relations_query + filter_query + return_query
return full_query