|
| 1 | +# DateGraphX (Learning Edition) |
| 2 | + |
| 3 | +[English](#english) | [中文](#chinese) |
| 4 | + |
| 5 | +> ⚠️ **Note**: This is a learning edition. For commercial use, please contact us for customized solutions! |
| 6 | +> |
| 7 | +> ⚠️ **注意**: 这是学习版本。商业用途请联系我们定制解决方案! |
| 8 | +
|
| 9 | +<a name="english"></a> |
| 10 | +## 🌟 DateGraphX |
| 11 | + |
| 12 | +An intelligent document analysis system that combines LangChain, Neo4j graph database, and large language models to create a knowledge graph-based RAG (Retrieval-Augmented Generation) application. |
| 13 | + |
| 14 | +### 🖼️ Project Demo |
| 15 | + |
| 16 | +#### Q&A System Interface |
| 17 | + |
| 18 | + |
| 19 | +#### Knowledge Graph Visualization |
| 20 | + |
| 21 | + |
| 22 | +### 🚀 Features |
| 23 | + |
| 24 | +- 📊 Automatic Knowledge Graph Construction |
| 25 | + - PDF document processing and analysis |
| 26 | + - Intelligent text segmentation |
| 27 | + - Relationship extraction |
| 28 | + - Interactive graph visualization |
| 29 | + |
| 30 | +- 🤖 Natural Language Q&A |
| 31 | + - Context-aware responses |
| 32 | + - Knowledge graph-based retrieval |
| 33 | + - Multi-LLM support (DeepSeek, OpenAI) |
| 34 | + - Real-time graph exploration |
| 35 | + |
| 36 | +### 📦 Project Structure |
| 37 | +``` |
| 38 | +DateGraphX/ |
| 39 | +├── app.py # Main application file |
| 40 | +├── api_utils.py # API utilities |
| 41 | +├── config.py # Configuration settings |
| 42 | +├── data_persistence_utils.py # Data persistence helpers |
| 43 | +├── knowledge_graph_utils.py # Knowledge graph functions |
| 44 | +├── requirements.txt # Project dependencies |
| 45 | +├── cache/ # Cache directory |
| 46 | +├── logo.png # Project logo |
| 47 | +├── kg.jpg # Knowledge graph demo |
| 48 | +└── qa.jpg # Q&A interface demo |
| 49 | +``` |
| 50 | + |
| 51 | +### 🔧 Installation |
| 52 | + |
| 53 | +1. Clone repository: |
| 54 | +```bash |
| 55 | +git clone https://github.com/adoresever/DateGraphX.git |
| 56 | +cd DateGraphX |
| 57 | +``` |
| 58 | + |
| 59 | +2. Create and activate conda environment: |
| 60 | +```bash |
| 61 | +conda create -n datagraphx python=3.10 |
| 62 | +conda activate datagraphx |
| 63 | +``` |
| 64 | + |
| 65 | +3. Install dependencies: |
| 66 | +```bash |
| 67 | +pip install -r requirements.txt |
| 68 | +``` |
| 69 | + |
| 70 | +4. Start application: |
| 71 | +```bash |
| 72 | +streamlit run app.py |
| 73 | +``` |
| 74 | + |
| 75 | +### 🛠️ Requirements |
| 76 | + |
| 77 | +- Python 3.10+ |
| 78 | +- Neo4j Database Server |
| 79 | +- DeepSeek/OpenAI API access |
| 80 | +- CUDA-compatible GPU (recommended) |
| 81 | + |
| 82 | +--- |
| 83 | + |
| 84 | +<a name="chinese"></a> |
| 85 | +## 🌟 DateGraphX 学习版 |
| 86 | + |
| 87 | +一个智能文档分析系统,结合了 LangChain、Neo4j 图数据库和大型语言模型,创建了一个基于知识图谱的 RAG(检索增强生成)应用。 |
| 88 | + |
| 89 | +### 🖼️ 项目展示 |
| 90 | + |
| 91 | +#### 知识图谱可视化 |
| 92 | + |
| 93 | + |
| 94 | +#### 问答系统界面 |
| 95 | + |
| 96 | + |
| 97 | +### 🚀 功能特点 |
| 98 | + |
| 99 | +- 📊 自动知识图谱构建 |
| 100 | + - PDF文档处理与分析 |
| 101 | + - 智能文本分段 |
| 102 | + - 关系抽取 |
| 103 | + - 交互式图谱可视化 |
| 104 | + |
| 105 | +- 🤖 自然语言问答 |
| 106 | + - 上下文感知响应 |
| 107 | + - 基于知识图谱的检索 |
| 108 | + - 多LLM支持(DeepSeek、OpenAI) |
| 109 | + - 实时图谱探索 |
| 110 | + |
| 111 | +### 📦 项目结构 |
| 112 | +``` |
| 113 | +DateGraphX/ |
| 114 | +├── app.py # 主应用程序文件 |
| 115 | +├── api_utils.py # API工具 |
| 116 | +├── config.py # 配置设置 |
| 117 | +├── data_persistence_utils.py # 数据持久化助手 |
| 118 | +├── knowledge_graph_utils.py # 知识图谱功能 |
| 119 | +├── requirements.txt # 项目依赖 |
| 120 | +├── cache/ # 缓存目录 |
| 121 | +├── logo.png # 项目标志 |
| 122 | +├── kg.jpg # 知识图谱演示 |
| 123 | +└── qa.jpg # 问答界面演示 |
| 124 | +``` |
| 125 | + |
| 126 | +### 🔧 安装步骤 |
| 127 | + |
| 128 | +1. 克隆仓库: |
| 129 | +```bash |
| 130 | +git clone https://github.com/adoresever/DateGraphX.git |
| 131 | +cd DateGraphX |
| 132 | +``` |
| 133 | + |
| 134 | +2. 创建并激活conda环境: |
| 135 | +```bash |
| 136 | +conda create -n datagraphx python=3.10 |
| 137 | +conda activate datagraphx |
| 138 | +``` |
| 139 | + |
| 140 | +3. 安装依赖: |
| 141 | +```bash |
| 142 | +pip install -r requirements.txt |
| 143 | +``` |
| 144 | + |
| 145 | +4. 启动应用: |
| 146 | +```bash |
| 147 | +streamlit run app.py |
| 148 | +``` |
| 149 | + |
| 150 | +### 🛠️ 环境要求 |
| 151 | + |
| 152 | +- Python 3.10+ |
| 153 | +- Neo4j 数据库服务器 |
| 154 | +- DeepSeek/OpenAI API 访问权限 |
| 155 | +- CUDA兼容GPU(推荐) |
| 156 | + |
| 157 | +## 👥 作者 |
| 158 | + |
| 159 | + |
| 160 | + |
| 161 | +## 📝 致谢 |
| 162 | + |
| 163 | +本项目的知识图谱部分参考了 [LightRAG](https://github.com/HKUDS/LightRAG) |
| 164 | + |
| 165 | +## 📄 许可证 |
| 166 | + |
| 167 | +CC BY-NC-SA 4.0 - 详见 [LICENSE](LICENSE) 文件 |
| 168 | + |
| 169 | +--- |
| 170 | + |
| 171 | +> 🔒 **商业定制** |
| 172 | +> |
| 173 | + |
0 commit comments