-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathhparams.py
171 lines (144 loc) · 4.96 KB
/
hparams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# NOTE: If you want full control for model architecture. please take a look
# at the code and change whatever you want. Some hyper parameters are hardcoded.
class Map(dict):
"""
Example:
m = Map({'first_name': 'Eduardo'}, last_name='Pool', age=24, sports=['Soccer'])
Credits to epool:
https://stackoverflow.com/questions/2352181/how-to-use-a-dot-to-access-members-of-dictionary
"""
def __init__(self, *args, **kwargs):
super(Map, self).__init__(*args, **kwargs)
for arg in args:
if isinstance(arg, dict):
for k, v in arg.items():
self[k] = v
if kwargs:
for k, v in kwargs.iteritems():
self[k] = v
def __getattr__(self, attr):
return self.get(attr)
def __setattr__(self, key, value):
self.__setitem__(key, value)
def __setitem__(self, key, value):
super(Map, self).__setitem__(key, value)
self.__dict__.update({key: value})
def __delattr__(self, item):
self.__delitem__(item)
def __delitem__(self, key):
super(Map, self).__delitem__(key)
del self.__dict__[key]
# Default hyperparameters:
hparams = Map({
'name': "wavenet_vocoder",
# Convenient model builder
'builder': "wavenet",
# Input type:
# 1. raw [-1, 1]
# 2. mulaw [-1, 1]
# 3. mulaw-quantize [0, mu]
# If input_type is raw or mulaw, network assumes scalar input and
# discretized mixture of logistic distributions output, otherwise one-hot
# input and softmax output are assumed.
# **NOTE**: if you change the one of the two parameters below, you need to
# re-run preprocessing before training.
'input_type': "raw",
'quantize_channels': 65536, # 65536 or 256
# Audio:
'sample_rate': 16000,
# this is only valid for mulaw is True
'silence_threshold': 2,
'num_mels': 80,
'fmin': 125,
'fmax': 7600,
'fft_size': 1024,
# shift can be specified by either hop_size or frame_shift_ms
'hop_size': 256,
'frame_shift_ms': None,
'min_level_db': -100,
'ref_level_db': 20,
# whether to rescale waveform or not.
# Let x is an input waveform, rescaled waveform y is given by:
# y = x / np.abs(x).max() * rescaling_max
'rescaling': True,
'rescaling_max': 0.999,
# mel-spectrogram is normalized to [0, 1] for each utterance and clipping may
# happen depends on min_level_db and ref_level_db, causing clipping noise.
# If False, assertion is added to ensure no clipping happens.o0
'allow_clipping_in_normalization': True,
# Mixture of logistic distributions:
'log_scale_min': float(-32.23619130191664),
# Model:
# This should equal to `quantize_channels` if mu-law quantize enabled
# otherwise num_mixture * 3 (pi, mean, log_scale)
'out_channels': 10 * 3,
'layers': 24,
'stacks': 4,
'residual_channels': 512,
'gate_channels': 512, # split into 2 gropus internally for gated activation
'skip_out_channels': 256,
'dropout': 1 - 0.95,
'kernel_size': 3,
# If True, apply weight normalization as same as DeepVoice3
'weight_normalization': True,
# Use legacy code or not. Default is True since we already provided a model
# based on the legacy code that can generate high-quality audio.
# Ref: https://github.com/r9y9/wavenet_vocoder/pull/73
'legacy': True,
# Local conditioning (set negative value to disable))
'cin_channels': 80,
# If True, use transposed convolutions to upsample conditional features,
# otherwise repeat features to adjust time resolution
'upsample_conditional_features': True,
# should np.prod(upsample_scales) == hop_size
'upsample_scales': [4, 4, 4, 4],
# Freq axis kernel size for upsampling network
'freq_axis_kernel_size': 3,
# Global conditioning (set negative value to disable)
# currently limited for speaker embedding
# this should only be enabled for multi-speaker dataset
'gin_channels': -1, # i.e., speaker embedding dim
'n_speakers': -1,
# Data loader
'pin_memory': True,
'num_workers': 2,
# train/test
# test size can be specified as portion or num samples
'test_size': 0.0441, # 50 for CMU ARCTIC single speaker
'test_num_samples': None,
'random_state': 1234,
# Loss
# Training:
'batch_size': 2,
'adam_beta1': 0.9,
'adam_beta2': 0.999,
'adam_eps': 1e-8,
'amsgrad': False,
'initial_learning_rate': 1e-3,
# see lrschedule.py for available lr_schedule
'lr_schedule': "noam_learning_rate_decay",
'lr_schedule_kwargs': {}, # {"anneal_rate": 0.5, "anneal_interval": 50000},
'nepochs': 2000,
'weight_decay': 0.0,
'clip_thresh': -1,
# max time steps can either be specified as sec or steps
# if both are None, then full audio samples are used in a batch
'max_time_sec': None,
'max_time_steps': 8000,
# Hold moving averaged parameters and use them for evaluation
'exponential_moving_average': True,
# averaged = decay * averaged + (1 - decay) * x
'ema_decay': 0.9999,
# Save
# per-step intervals
'checkpoint_interval': 10000,
'train_eval_interval': 10000,
# per-epoch interval
'test_eval_epoch_interval': 5,
'save_optimizer_state': True,
# Eval:
})
def hparams_debug_string():
values = hparams.values()
hp = [' %s: %s' % (name, values[name]) for name in sorted(values)]
return 'Hyperparameters:\n' + '\n'.join(hp)