-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodel_vc.py
317 lines (238 loc) · 10.3 KB
/
model_vc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Function
import numpy as np
class Self_Attn(nn.Module):
""" Self attention Layer"""
def __init__(self, dim_emb_in, dim_emb_out):
super(Self_Attn,self).__init__()
self.query = LinearNorm(dim_emb_in, dim_emb_out)
self.key = LinearNorm(dim_emb_in, dim_emb_out)
self.value = LinearNorm(dim_emb_in, dim_emb_out)
self.softmax = nn.Softmax(dim=-1)
def forward(self,x):
"""
inputs :
x : input feature maps( dim_emb )
returns :
out : self attention value + input feature
attention: B X N X N (N is Width*Height)
"""
x = x.unsqueeze(1)
proj_query = self.query(x)
proj_key = self.key(x)
energy = torch.matmul(proj_query.permute(0,2,1), proj_key)
attention = self.softmax(energy)
proj_value = self.value(x)
out = torch.matmul(proj_value, attention.permute(0,2,1))
out = out.squeeze(1)
return out, attention
class Repara(nn.Module):
def __init__(self, dim_emb, hidden_sizes, latent_size):
super(Repara,self).__init__()
self.linearelu = nn.Sequential(
nn.Linear(dim_emb, hidden_sizes),
nn.ReLU(),
nn.Linear(hidden_sizes, latent_size),
nn.ReLU())
self.linearelu_mu = nn.Linear(latent_size, latent_size)
self.linearelu_logvar = nn.Linear(latent_size, latent_size)
def gaussian_param_projection(self, x):
return self.linearelu_mu(x), self.linearelu_logvar(x)
def reparameterize(self, mu, logvar):
std = torch.exp(0.5*logvar)
eps = torch.randn_like(std)
return mu + eps*std
def forward(self, x):
x = self.linearelu(x)
mu, logvar = self.gaussian_param_projection(x)
z = self.reparameterize(mu, logvar)
return z, mu, logvar
class LinearNorm(torch.nn.Module):
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
super(LinearNorm, self).__init__()
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
torch.nn.init.xavier_uniform_(
self.linear_layer.weight,
gain=torch.nn.init.calculate_gain(w_init_gain))
def forward(self, x):
return self.linear_layer(x)
class ConvNorm(torch.nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1,
padding=None, dilation=1, bias=True, w_init_gain='linear'):
super(ConvNorm, self).__init__()
if padding is None:
assert(kernel_size % 2 == 1)
padding = int(dilation * (kernel_size - 1) / 2)
self.conv = torch.nn.Conv1d(in_channels, out_channels,
kernel_size=kernel_size, stride=stride,
padding=padding, dilation=dilation,
bias=bias)
torch.nn.init.xavier_uniform_(
self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain))
def forward(self, signal):
conv_signal = self.conv(signal)
return conv_signal
class Encoder(nn.Module):
"""Encoder module:
"""
def __init__(self, dim_neck, dim_emb, freq):
super(Encoder, self).__init__()
self.dim_neck = dim_neck
self.freq = freq
convolutions = []
for i in range(3):
conv_layer = nn.Sequential(
ConvNorm(80+dim_emb if i==0 else 512,
512,
kernel_size=5, stride=1,
padding=2,
dilation=1, w_init_gain='relu'),
nn.BatchNorm1d(512))
convolutions.append(conv_layer)
self.convolutions = nn.ModuleList(convolutions)
self.lstm = nn.LSTM(512, dim_neck, 2, batch_first=True, bidirectional=True)
def forward(self, x, c_org):
x = x.squeeze(1).transpose(2,1)
c_org = c_org.unsqueeze(-1).expand(-1, -1, x.size(-1))
x = torch.cat((x, c_org), dim=1)
for conv in self.convolutions:
x = F.relu(conv(x))
x = x.transpose(1, 2)
self.lstm.flatten_parameters()
outputs, _ = self.lstm(x)
out_forward = outputs[:, :, :self.dim_neck]
out_backward = outputs[:, :, self.dim_neck:]
codes = []
for i in range(0, outputs.size(1), self.freq):
codes.append(torch.cat((out_forward[:,i+self.freq-1,:],out_backward[:,i,:]), dim=-1))
return codes
class Decoder(nn.Module):
"""Decoder module:
"""
def __init__(self, dim_neck, dim_emb, dim_pre):
super(Decoder, self).__init__()
self.lstm1 = nn.LSTM(dim_neck*2+dim_emb, dim_pre, 1, batch_first=True)
convolutions = []
for i in range(3):
conv_layer = nn.Sequential(
ConvNorm(dim_pre,
dim_pre,
kernel_size=5, stride=1,
padding=2,
dilation=1, w_init_gain='relu'),
nn.BatchNorm1d(dim_pre))
convolutions.append(conv_layer)
self.convolutions = nn.ModuleList(convolutions)
self.lstm2 = nn.LSTM(dim_pre, 1024, 2, batch_first=True)
self.linear_projection = LinearNorm(1024, 80)
def forward(self, x):
x, _ = self.lstm1(x)
x = x.transpose(1, 2)
for conv in self.convolutions:
x = F.relu(conv(x))
x = x.transpose(1, 2)
outputs, _ = self.lstm2(x)
decoder_output = self.linear_projection(outputs)
return decoder_output
class Postnet(nn.Module):
"""Postnet
- Five 1-d convolution with 512 channels and kernel size 5
"""
def __init__(self):
super(Postnet, self).__init__()
self.convolutions = nn.ModuleList()
self.convolutions.append(
nn.Sequential(
ConvNorm(80, 512,
kernel_size=5, stride=1,
padding=2,
dilation=1, w_init_gain='tanh'),
nn.BatchNorm1d(512))
)
for i in range(1, 5 - 1):
self.convolutions.append(
nn.Sequential(
ConvNorm(512,
512,
kernel_size=5, stride=1,
padding=2,
dilation=1, w_init_gain='tanh'),
nn.BatchNorm1d(512))
)
self.convolutions.append(
nn.Sequential(
ConvNorm(512, 80,
kernel_size=5, stride=1,
padding=2,
dilation=1, w_init_gain='linear'),
nn.BatchNorm1d(80))
)
def forward(self, x):
for i in range(len(self.convolutions) - 1):
x = torch.tanh(self.convolutions[i](x))
x = self.convolutions[-1](x)
return x
class Generator(nn.Module):
"""Generator network."""
def __init__(self, dim_neck, dim_emb, dim_pre, freq):
super(Generator, self).__init__()
self.attn = Self_Attn(dim_emb, dim_emb)
self.encoder = Encoder(dim_neck, dim_emb, freq)
self.decoder = Decoder(dim_neck, 256, dim_pre)
self.postnet = Postnet()
self.reparam = Repara(dim_emb, hidden_sizes = 320, latent_size = 256)
def reparameterize(self, mu, logvar):
std = torch.exp(0.5*logvar)
eps = torch.randn_like(std)
return mu + eps*std
def forward(self, x, c_org, c_trg, ge2e_pack):
# ge2e_pack: spk_num * emb_per_spk * emb_size; domain_input: None in conversion phase; alpha in DAT
if x is None:
return c_trg
if ge2e_pack is not None:
ge2e_ip = []
for emb in ge2e_pack:
emb, attn_map = self.attn(emb)
emb_V2A, _, _ = self.reparam(emb)
ge2e_ip.append(emb_V2A)
return torch.stack(ge2e_ip, dim=0)
codes = self.encoder(x, c_org)
if c_trg is None:
return torch.cat(codes, dim=-1)
c_trg, attn_map = self.attn(c_trg)
c_trg, mu, logvar = self.reparam(c_trg)
tmp = []
for code in codes:
tmp.append(code.unsqueeze(1).expand(-1,int(x.size(1)/len(codes)),-1))
code_exp = torch.cat(tmp, dim=1)
encoder_outputs = torch.cat((code_exp, c_trg.unsqueeze(1).expand(-1,x.size(1),-1)), dim=-1)
mel_outputs = self.decoder(encoder_outputs)
mel_outputs_postnet = self.postnet(mel_outputs.transpose(2,1))
mel_outputs_postnet = mel_outputs + mel_outputs_postnet.transpose(2,1)
return mel_outputs, mel_outputs_postnet, torch.cat(codes, dim=-1), c_trg
class Domain_Trans(nn.Module):
"""Domain_Transformation network."""
def __init__(self):
super(Domain_Trans, self).__init__()
self.trans_layer = nn.Linear(256, 256)
def forward(self, feat):
feat = self.trans_layer(feat)
return feat
class FaceEncoder(nn.Module):
"""Generator network."""
def __init__(self, dim_neck, dim_emb, dim_pre, freq):
super(FaceEncoder, self).__init__()
self.attn = Self_Attn(dim_emb, dim_emb)
self.reparam = Repara(dim_emb, hidden_sizes = 320, latent_size = 256)
self.trans_layer = nn.Linear(256, 256)
def reparameterize(self, mu, logvar):
std = torch.exp(0.5*logvar)
eps = torch.randn_like(std)
return mu + eps*std
def forward(self, c_trg):
c_trg, attn_map = self.attn(c_trg)
c_trg, mu, logvar = self.reparam(c_trg)
c_trg = self.trans_layer(c_trg)
return c_trg