-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathloss.py
45 lines (36 loc) · 1.65 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
"""This module provides the a softmax cross entropy loss for training FCN.
In order to train VGG first build the model and then feed apply vgg_fcn.up
to the loss. The loss function can be used in combination with any optimizer
(e.g. Adam) to finetune the whole model.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
def loss(logits, labels, num_classes, summarize=True):
"""Calculate the loss from the logits and the labels.
Args:
logits: tensor, float - [batch_size, width, height, num_classes].
Use vgg_fcn.up as logits.
labels: Labels tensor, int32 - [batch_size, width, height, num_classes].
The ground truth of your data.
head: numpy array - [num_classes]
Weighting the loss of each class
Optional: Prioritize some classes
Returns:
loss: Loss tensor of type float.
"""
with tf.name_scope('loss'):
logits = tf.reshape(logits, (-1, num_classes))
#labels = tf.to_float(tf.contrib.layers.flatten(labels))
labels = tf.squeeze(tf.reshape(labels, (-1,1)))
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels, logits=logits, name='cross_entropy')
cross_entropy_mean = tf.reduce_mean(cross_entropy,
name='cross_entropy_mean')
tf.add_to_collection('losses', cross_entropy_mean)
loss = tf.add_n(tf.get_collection('losses'), name='total_loss')
# Add summary
if summarize:
tf.summary.scalar('CrossEntropy_loss', cross_entropy_mean)
return loss