-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathEncoder_Decoder.py
255 lines (181 loc) · 7.47 KB
/
Encoder_Decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
# %%
# from Encoder_Decoder_Attention import Decoder_num_layers, Encoder_num_layers
# from Encoder_Decoder_Attention import Decoder_output_size
import sys
from numpy.lib.function_base import average
from tensorboardX import SummaryWriter
import tensorboardX
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
import time
from models.models import *
from src.util import *
import argparse
import time
import glob
torch.cuda.empty_cache()
# temporary code for debugging
sys.argv = ['']
# temporary code for debugging
model_summary_writer = SummaryWriter(
'log/encoder_decoder_{}'.format(time.time()))
parser = argparse.ArgumentParser()
# parser.add_argument('--gps-data', default="data/GPS/GPS_0.npy", type=str)
# parser.add_argument('--gps-data', default="GPS.npy", type=str)
parser.add_argument('--gps_data', default="GPSmax7_new_1.npy", type=str)
parser.add_argument('--label_data', default="Label_smax7_new_1.npy", type=str)
parser.add_argument('--train-ratio', default=0.7, type=float)
parser.add_argument('--learning-rate', default=0.007, type=float)
# parser.add_argument('--training_num', default=100, type=int)
parser.add_argument('--batch_size', default=1000, type=int)
args = parser.parse_args()
Encoder_in_feature = 2
Encoder_emb_size = 256
Encoder_hid_size = 512
Encoder_num_layers = 1
Decoder_emb_size = 256
Decoder_hidden_size = 512
Decoder_output_size = 231
Decoder_num_layers = 1
# initialize dataset
# raw_input = datacombination("data/GPS/*.npy")
raw_input = np.load(args.gps_data)
raw_target = np.load(args.label_data)
raw_input = raw_input[0:2000]
raw_target = raw_target[0:2000]
raw_target[raw_target < 0] = 0
# %%
# add start and end token in the target data
# delete padding data
# raw_target = raw_target[:, 0:raw_target.shape[1]-1]
# device setting
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# normalization
x_min = 127.01691
x_max = 127.07
y_min = 37.48184
y_max = 37.532416
def apply_normalize_x(x): return (x-x_min)/(x_max-x_min) if x != -1 else -1
def apply_normalize_y(y): return (y-y_min)/(y_max-y_min) if y != -1 else -1
raw_input[:, :, 0] = np.vectorize(apply_normalize_x)(raw_input[:, :, 0])
raw_input[:, :, 1] = np.vectorize(apply_normalize_y)(raw_input[:, :, 1])
train_ratio = args.train_ratio
test_ratio = 1-train_ratio
n_data = raw_target.shape[0]
n_train = int(n_data*train_ratio)
n_test = n_data-n_train
randidx = np.sort(np.random.permutation(n_data))
train_idx = randidx[:n_train]
test_idx = randidx[n_train:(n_train+n_test)]
train_input = raw_input[train_idx]
train_target = raw_target[train_idx]
train_len = train_input[:, :, 0] != -1
train_len = train_len.sum(axis=1)
test_input = raw_input[test_idx]
test_target = raw_target[test_idx]
test_len = test_input[:, :, 0] != -1
test_len = test_len.sum(axis=1)
# change to tensor
train_input = torch.Tensor(train_input)
# train_target is longtensor for embedding
train_target = torch.LongTensor(train_target)
train_target = train_target.squeeze()
# train_target is Tensor for embed_fc
# train_target = torch.Tensor(train_target)
# train_target = train_target.squeeze()
train_len = torch.LongTensor(train_len)
test_input = torch.Tensor(test_input)
# test_target is LongTensor for embeeding
test_target = torch.LongTensor(test_target)
# test_target = torch.Tensor(test_target)
test_target = test_target.squeeze()
test_len = torch.LongTensor(test_len)
# initialize deep networks
encoder = EncoderRNN(Encoder_in_feature, Encoder_emb_size,
Encoder_hid_size, Encoder_num_layers)
decoder = DecoderRNN(Decoder_emb_size,
Decoder_hidden_size, Decoder_output_size, Decoder_num_layers)
model = Seq2Seq(encoder, decoder, device)
# set opimizer adn criterioin
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate, eps=1e-10)
criterion = nn.CrossEntropyLoss(ignore_index=0)
# train_len, idx = torch.sort(train_len, descending=True)
# train_input = train_input[idx]
# train_target = train_target[idx]
# train_target = train_target[train_target[:] != 0].reshape(
# train_target.shape[0], train_target.shape[1]-1)
if device.type == 'cuda':
model = model.cuda(0)
# train_input = train_input.cuda(0)
# train_target = train_target.cuda(0)
# train_len = train_len.cuda(0)
# test_input = test_input.cuda(0)
# test_target = test_target.cuda(0)
# test_len = test_len.cuda(0)
# %%
# epoch_loss = 0
data_batch = train_input.size(0)
for i in range(10000):
randidx = torch.randperm(train_input.shape[0])
train_input = train_input[randidx]
train_len = train_len[randidx]
train_target = train_target[randidx]
num_batch_iteration = int(data_batch/args.batch_size)
loss_result = []
acc_result = []
for j in range(num_batch_iteration):
temp_j = (j+1)*batch_size
sample_train_input = train_input[(j * batch_size):(temp_j)]
sample_train_target = train_target[(j * batch_size):(temp_j)]
sample_train_len = train_len[(j * batch_size):(temp_j)]
sample_train_len, idx = torch.sort(sample_train_len, descending=True)
sample_train_input = sample_train_input[idx][:,
0:sample_train_len[0], :]
sample_train_target = sample_train_target[idx]
sample_train_input = sample_train_input.permute(1, 0, 2).to(device)
sample_train_target = sample_train_target.permute(1, 0).to(device
output=model(sample_train_input,
sample_train_target, sample_train_len)
# output = [trg len,batch size, output dim]
output_dim=output.shape[-1]
output=output[1:].reshape(-1, output_dim)
trg=sample_train_target[1:].reshape(-1)
# output = output.view((output.size(0),output.size(2),output.size(1)))
# train_target = train_target.T
loss=criterion(output, trg)
optimizer.zero_grad()
loss.backward()
optimizer.step()
acc=((output.argmax(1) == trg).sum()).item()/trg.size(0)
acc_result.append(acc)
loss_result.append(loss.item())
ACC=sum(acc_result)/len(acc_result) * 100
Loss=sum(loss_result)/len(loss_result)
# acc = float(acc) / (train_target.size(0) * (train_target.size(1)-1)) * 100
# epoch_loss += loss.item()
print("iteration : {} A-loss : {:.5f} accuracy : {:.4f}".format(
i+1, Loss, ACC))
model_summary_writer.add_scalar('loss', Loss, i)
model_summary_writer.add_scalar('acc', ACC, i)
# %%
# PATH = "C:/Users/iziz56/Desktop/DeepMapMatching/pytorch_model/trained_model_2.pth"
# torch.save(model.state_dict(), PATH)
# validation
test_len, idx=torch.sort(test_len, descending=True)
test_input=test_input[idx][:,
0:test_len[0], :].permute(1, 0, 2)
test_target=test_target[idx].permute(1, 0)
test_input=test_input.to(device)
test_target=test_target.to(device)
output=model(test_input, test_target, test_len)
output_dim=output.shape[-1]
output=output[1:].reshape(-1, output_dim)
trg=test_target[1:].reshape(-1)
acc=((output.argmax(1) == trg).sum()).item()/trg.size(0) * 100
# acc = torch.sum(torch.argmax(output, 1) == test_target_1)
# acc = float(acc) / (test_target.size(0) * (test_target.size(1)-1)) * 100
# print(acc)
# %%