-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTransformer_1.py
151 lines (125 loc) · 4.2 KB
/
Transformer_1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os
import pandas as pd
from numpy.lib.function_base import average
from tensorboardX import SummaryWriter
import tensorboardX
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
import time
from models.Transformer import *
from src.util import *
import argparse
import time
import glob
import sys
# %%
sys.argv = ['']
# temporary code for debugging
torch.cuda.empty_cache()
model_summary_writer = SummaryWriter(
'log/encoder_decoder_{}'.format(time.time()/60))
parser = argparse.ArgumentParser()
#parser.add_argument('--gps-data', default="data/GPS/GPS_0.npy", type=str)
parser.add_argument(
'--gps_data', default="data/training_data/GPSmax7_new_6.npy", type=str)
parser.add_argument(
'--label_data', default="data/training_data/Label_smax7_new_6.npy", type=str)
# parser.add_argument('--label_data', default="Label_1.npy", type=str)
parser.add_argument('--train-ratio', default=0.7, type=float)
parser.add_argument('--learning-rate', default=3e-4, type=float)
# parser.add_argument('--training_num', default=100, type=int)
parser.add_argument('--batch_size', default=100, type=int)
args = parser.parse_args()
# initialize dataset
#raw_input = datacombination("data/GPS/*.npy")
#raw_target = datacombination("data/Label/*.npy")
raw_input = np.load(args.gps_data)[0:1000]
raw_target = np.load(args.label_data)[0:1000]
raw_target[raw_target < 0] = 0
raw_target = raw_target[:, 1:]
# %%
# device setting
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
raw_input = normalization(raw_input)
train_ratio = args.train_ratio
test_ratio = 1-train_ratio
n_data = raw_target.shape[0]
n_train = int(n_data*train_ratio)
n_test = n_data-n_train
randidx = np.sort(np.random.permutation(n_data))
train_idx = randidx[:n_train]
test_idx = randidx[n_train:(n_train+n_test)]
train_input = raw_input[train_idx]
train_target = raw_target[train_idx]
train_len = train_input[:, :, 0] != -1
train_len = train_len.sum(axis=1)
test_input = raw_input[test_idx]
test_target = raw_target[test_idx]
test_len = test_input[:, :, 0] != -1
test_len = test_len.sum(axis=1)
# change to tensor
train_input = torch.Tensor(train_input)
train_target = torch.LongTensor(train_target)
train_target = train_target.squeeze()
train_len = torch.LongTensor(train_len)
test_input = torch.Tensor(test_input)
# test_target is LongTensor for embeeding
test_target = torch.LongTensor(test_target)
# test_target = torch.Tensor(test_target)
test_target = test_target.squeeze()
test_len = torch.LongTensor(test_len)
# %%
class Transformer(nn.Module):
def __init__(
self,
embedding_size,
src_vocab_size,
trg_vocab_size,
src_pad_idx,
num_heads,
num_encoder_layers,
num_decoder_layers,
forward_expansion,
dropout,
max_len,
device,
):
super(Transformer, self).__init__()
self.src_word_embedding = nn.Embedding(src_vocab_size, embedding_size)
self.src_position_embedding = nn.Embedding(max_len, embedding_size)
self.trg_word_embedding = nn.Embedding(trg_vocab_size, embedding_size)
self.trg_position_emebdding = nn.Embedding(max_len, embedding_size)
self.device = device
self.transformer = nn.Transformer(
embedding_size,
num_heads,
num_encoder_layers,
num_decoder_layers,
forward_expansion,
dropout
)
self.fc_out = nn.Linear(embedding_size, trg_vocab_size)
self.dropout = nn.Dropout(dropout)
self.src_prd_idx = src_pad_idx
def forward(self, src, trg):
N, src_seq_length, _ = src.shape
N, trg_seq_length = trg.shape
src_positions = (
torch.arange(0, src_seq_length).unsqueeze(
1).expand(src_seq_length, N)
.to(self.device)
)
trg_positions = (
torch.arange(0, trg_seq_length).unsqueeze(
1).expand(trg_seq_length, N)
.to(self.device)
)
# %%
# initialize deep networks
src_pad_idx = -1
trg_pad_idx = 0
src_vocab_size = 2
trg_vocab_size = 231