-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_gail_pytorch.py
203 lines (162 loc) · 8.53 KB
/
run_gail_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
#!/usr/bin/python3
import argparse
import gym
import numpy as np
# import tensorflow as tf
import torch
from network_models.policy_net_pytorch import Policy_net,Value_net
from network_models.discriminator_pytorch import Discriminator
from algo.ppo_pytorch import PPOTrain
class DiscretizedActions(gym.ActionWrapper):
def set_action_space(self,num_actions):
self.high = self.action_space.high.item()
self.low = self.action_space.low.item()
self.num_actions = num_actions
self.deltas = (self.high - self.low) / self.num_actions
self.high_list = self.low + np.array(range(self.num_actions), dtype = np.float32) * self.deltas + self.deltas
self.low_list = self.low + np.array(range(self.num_actions), dtype = np.float32) * self.deltas
self.mid_list = self.low + np.array(range(self.num_actions), dtype = np.float32) * self.deltas + self.deltas/2
def action(self, action, deterministic = True):
if deterministic:
return self.mid_list[action]
else:
return np.random.uniform(self.low_list[action] , self.high_list[action])
def reverse_action(self, action):
return np.abs(self.mid_list - action).argmin()
def argparser():
import sys
# sys.argv=['--logdir log/train/ppo']
parser = argparse.ArgumentParser()
parser.add_argument('--logdir', help='log directory', default='log/train/ppo')
parser.add_argument('--savedir', help='save directory', default='trained_models/ppo')
parser.add_argument('--gamma', default=0.95, type=float)
parser.add_argument('--iteration', default=int(1e5), type=int)
parser.add_argument('--num_actions', default = int(10) , type=int)
parser.add_argument('--n-episode',default=int(5) , type= int)
parser.add_argument('--batch-size', default=int(64) , type = int)
parser.add_argument('--learning-rate' , default=float(5e-5), type = float)
parser.add_argument('--cuda' , default=True)
return parser.parse_args()
args = argparser()
def main(args):
env = DiscretizedActions(gym.make('Pendulum-v0') )
env.set_action_space(args.num_actions)
env.seed(0)
ob_space = env.observation_space
act_space =env.action_space
state_dim = ob_space.shape[0]
# action_dim = act_space.shape[0]
action_dim = args.num_actions
policy = Policy_net(state_dim,action_dim,hidden=64, disttype = "categorical")
old_policy = Policy_net(state_dim,action_dim,hidden=64, disttype = "categorical")
value = Value_net(state_dim,action_dim,hidden=64)
PPO = PPOTrain(policy, old_policy, value, gamma=args.gamma, lr = args.learning_rate)
D = Discriminator(state_dim,action_dim, hidden = 64, disttype = "categorical")
discrim_opt = torch.optim.Adam(D.parameters(),lr = PPO.lr,eps=PPO.eps)
if args.cuda:
policy = policy.cuda()
old_policy = old_policy.cuda()
value = value.cuda()
D = D.cuda()
device = torch.device("cuda" if torch.cuda.is_available() & args.cuda else "cpu")
expert_observations = np.load("trajectory/pendulum_expert_states.npy")
expert_actions = np.load("trajectory/pendulum_expert_action.npy")
expert_actions = np.vectorize(env.reverse_action)(expert_actions)
# expert = np.load("trajectory/mountain_car_expert_demo.npy")
# expert = np.reshape(expert, newshape = (expert.shape[0]*expert.shape[1] , expert.shape[2]))
# expert = expert[expert[:,2] != -1.0,:]
# expert_observations = expert[:,0:2]
# expert_actions = expert[:,2]
# expert_observations = np.genfromtxt('trajectory/observations.csv')
# expert_actions = np.genfromtxt('trajectory/actions.csv', dtype=np.int32)
for iteration in range(args.iteration):
trajs = []
obs = env.reset()
for _ in range(args.n_episode):
observations = []
actions = []
rewards = []
v_preds = []
episode_length = 0
while True: # run policy RUN_POLICY_STEPS which is much less than episode length
# env.render()
episode_length += 1
obs = torch.Tensor(obs).unsqueeze(0)
action = policy.act(obs.to(device))
v_pred = value.forward(obs.to(device)).item()
next_obs, reward, done, info = env.step(np.array([action]))
observations.append(obs)
actions.append(action)
rewards.append(reward)
v_preds.append(v_pred)
if done:
next_obs = torch.Tensor(next_obs).unsqueeze(0)
v_pred = value.forward(next_obs.to(device))
v_preds_next = v_preds[1:] + [np.asscalar(v_pred)]
obs = env.reset()
break
else:
obs = next_obs
trajs.append([observations, actions, rewards, v_preds,v_preds_next])
avg_reward = np.mean([np.sum(x[2]) for x in trajs])
print("Total Avg. Reward = {:.2f}".format( avg_reward ) )
PPO.summary.add_scalar('reward', avg_reward ,PPO.summary_cnt )
# convert list to numpy array for feeding tf.placeholder
obs_temp = sum([x[0] for x in trajs],[])
act_temp = sum([x[1] for x in trajs],[])
learner_obs = torch.cat(obs_temp).float().to(device)
learner_act = torch.Tensor(act_temp).long().to(device)
for _ in range(2):
expert_obs = torch.from_numpy(expert_observations).float().to(device)
expert_act = torch.from_numpy(expert_actions).long().to(device).squeeze(1)
expert_prob = D.forward(expert_obs,expert_act)
learner_prob = D.forward(learner_obs , learner_act)
expert_target = torch.zeros_like(expert_prob)
learner_target = torch.ones_like(learner_prob)
criterion = torch.nn.BCELoss()
discrim_loss = criterion(expert_prob , expert_target) + \
criterion(learner_prob , learner_target)
discrim_opt.zero_grad()
discrim_loss.backward()
discrim_opt.step()
expert_acc = ((expert_prob < 0.5).float()).mean()
learner_acc = ((learner_prob > 0.5).float()).mean()
PPO.summary.add_scalar('loss/discrim',discrim_loss.item() ,PPO.summary_cnt )
PPO.summary.add_scalar('accuracy/expert',expert_acc.item() ,PPO.summary_cnt )
PPO.summary.add_scalar('accuracy/learner',learner_acc.item() ,PPO.summary_cnt )
inp=[]
for i in range(args.n_episode):
obs, act, reward, v_pred,v_pred_next = trajs[i]
obs = torch.cat(obs).float().to(device)
act = torch.Tensor(act).long().to(device)
d_reward = D.get_reward(obs , act)
d_reward = d_reward.squeeze(1)
gaes = PPO.get_gaes(rewards=d_reward, v_preds=v_pred, v_preds_next=v_pred_next)
gaes = torch.Tensor(gaes)
gaes = (gaes-gaes.mean())/gaes.std()
rewards = torch.Tensor(rewards)
v_pred_next = torch.Tensor(v_pred_next)
inp.append( [obs, act, gaes, d_reward, v_pred_next] )
avg_d_reward = np.mean([torch.sum(x[3]).item() for x in inp])
step_avg_d_reward = np.mean([torch.mean(x[3]).item() for x in inp])
PPO.summary.add_scalar('reward/d_reward', avg_d_reward ,PPO.summary_cnt )
PPO.summary.add_scalar('reward/step_d_reward', step_avg_d_reward ,PPO.summary_cnt )
PPO.hard_update(old_policy , policy)
obs = torch.cat([x[0] for x in inp])
act = torch.cat([x[1] for x in inp])
gaes = torch.cat([x[2] for x in inp])
d_reward = torch.cat([x[3] for x in inp])
v_pred_next = torch.cat([x[4] for x in inp])
inp = [obs, act, gaes, d_reward, v_pred_next]
# train
for _ in range(6):
sample_indices = np.random.randint(low=0, high=obs.shape[0], size=args.batch_size)
sampled_inp = [np.take(a=a.cpu(), indices=sample_indices, axis=0) for a in inp] # sample training data
PPO.train(obs =sampled_inp[0].to(device),
actions =sampled_inp[1].to(device),
gaes =sampled_inp[2].to(device),
rewards =sampled_inp[3].to(device),
v_preds_next=sampled_inp[4].to(device))
if __name__ == '__main__':
args = argparser()
main(args)