-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtransition_model.py
165 lines (129 loc) · 5.86 KB
/
transition_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import random
import torch
import torch.nn as nn
import numpy as np
def weight_init(m):
"""Custom weight init for Conv2D and Linear layers."""
if isinstance(m, nn.Linear):
nn.init.orthogonal_(m.weight.data)
m.bias.data.fill_(0.0)
elif isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d):
# delta-orthogonal init from https://arxiv.org/pdf/1806.05393.pdf
assert m.weight.size(2) == m.weight.size(3)
m.weight.data.fill_(0.0)
m.bias.data.fill_(0.0)
mid = m.weight.size(2) // 2
gain = nn.init.calculate_gain('relu')
nn.init.orthogonal_(m.weight.data[:, :, mid, mid], gain)
class DeterministicTransitionModel(nn.Module):
def __init__(self, encoder_feature_dim, action_shape, layer_width):
super().__init__()
self.fc = nn. Linear(encoder_feature_dim +
action_shape[0], layer_width)
self.ln = nn.LayerNorm(layer_width)
self.fc_mu = nn.Linear(layer_width, encoder_feature_dim)
print("Deterministic transition model chosen.")
self.apply(weight_init)
def forward(self, x):
x = self.fc(x)
x = self.ln(x)
x = torch.relu(x)
mu = self.fc_mu(x)
sigma = None
return mu, sigma
def sample_prediction(self, x):
mu, sigma = self(x)
return mu
class ProbabilisticTransitionModel(nn.Module):
def __init__(self, encoder_feature_dim, action_shape, layer_width, announce=True, max_sigma=1e1, min_sigma=1e-4):
super().__init__()
self.fc = nn. Linear(encoder_feature_dim +
action_shape[0], layer_width)
self.ln = nn.LayerNorm(layer_width)
self.fc_mu = nn.Linear(layer_width, encoder_feature_dim)
self.fc_sigma = nn.Linear(layer_width, encoder_feature_dim)
self.max_sigma = max_sigma
self.min_sigma = min_sigma
assert(self.max_sigma >= self.min_sigma)
if announce:
print("Probabilistic transition model chosen.")
self.apply(weight_init)
def forward(self, x):
x = self.fc(x)
x = self.ln(x)
x = torch.relu(x)
mu = self.fc_mu(x)
sigma = torch.sigmoid(self.fc_sigma(x)) # range (0, 1.)
# scaled range (min_sigma, max_sigma)
sigma = self.min_sigma + (self.max_sigma - self.min_sigma) * sigma
return mu, sigma
def sample_prediction(self, x):
mu, sigma = self(x)
eps = torch.randn_like(sigma)
return mu + sigma * eps
class ProbabilisticTransitionModel2(nn.Module):
def __init__(self, encoder_feature_dim, action_shape, layer_width, announce=True, max_sigma=1e1, min_sigma=1e-4):
super().__init__()
self.fc = nn. Linear(encoder_feature_dim +
action_shape[0], layer_width)
self.log_std_min = np.log(min_sigma)
self.log_std_max = np.log(max_sigma)
self.trunk = nn.Sequential(
nn.Linear(encoder_feature_dim +
action_shape[0], layer_width), nn.ReLU(),
nn.Linear(layer_width, layer_width), nn.ReLU(),
nn.Linear(layer_width, 2 * encoder_feature_dim)
)
# self.ln = nn.LayerNorm(layer_width)
# self.fc_mu = nn.Linear(layer_width, encoder_feature_dim)
# self.fc_sigma = nn.Linear(layer_width, encoder_feature_dim)
# self.max_sigma = max_sigma
# self.min_sigma = min_sigma
assert(self.log_std_max >= self.log_std_min)
if announce:
print("Probabilistic transition model chosen.")
self.apply(weight_init)
def forward(self, x):
mu, log_std = self.trunk(x).chunk(2, dim=-1)
# constrain log_std inside [log_std_min, log_std_max]
log_std = torch.tanh(log_std)
log_std = self.log_std_min + 0.5 * (
self.log_std_max - self.log_std_min
) * (log_std + 1)
sigma = log_std.exp()
return mu, sigma
def sample_prediction(self, x):
mu, sigma = self(x)
eps = torch.randn_like(sigma)
return mu + sigma * eps
class EnsembleOfProbabilisticTransitionModels(object):
def __init__(self, encoder_feature_dim, action_shape, layer_width, ensemble_size=5):
self.models = [ProbabilisticTransitionModel2(encoder_feature_dim, action_shape, layer_width, announce=False)
for _ in range(ensemble_size)]
print("Ensemble of probabilistic transition models chosen.")
def __call__(self, x):
mu_sigma_list = [model.forward(x) for model in self.models]
mus, sigmas = zip(*mu_sigma_list)
mus, sigmas = torch.stack(mus), torch.stack(sigmas)
return mus, sigmas
def sample_prediction(self, x):
model = random.choice(self.models)
return model.sample_prediction(x)
def to(self, device):
for model in self.models:
model.to(device)
return self
def parameters(self):
list_of_parameters = [list(model.parameters())
for model in self.models]
parameters = [p for ps in list_of_parameters for p in ps]
return parameters
_AVAILABLE_TRANSITION_MODELS = {'': DeterministicTransitionModel,
'deterministic': DeterministicTransitionModel,
'probabilistic': ProbabilisticTransitionModel2,
'ensemble': EnsembleOfProbabilisticTransitionModels}
def make_transition_model(transition_model_type, encoder_feature_dim, action_shape, layer_width=512):
assert transition_model_type in _AVAILABLE_TRANSITION_MODELS
return _AVAILABLE_TRANSITION_MODELS[transition_model_type](
encoder_feature_dim, action_shape, layer_width
)