This repository has been archived by the owner on Jul 2, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
533 lines (432 loc) · 19 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
"""
Mastodon infrastructure analysis tool. See README for usage.
Copyright 2020 Dominik Pataky <[email protected]>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
import argparse
import csv
import json
import time
from multiprocessing.pool import ThreadPool
import socket
from collections import namedtuple
from tqdm import tqdm
import os.path
import ip2asn
from graphs import plot_by_instances, plot_by_users, plot_by_active_users
import experiments
NUM_WORKERS = 4
CACHEFILE_NOIP = ".cache_no_ip"
CACHEFILE_IP = ".cache_ip"
CACHEFILE_ASN = ".cache_asn"
HOSTER_MAP = {
"cloudflarenet": "cloudflare",
"amazon technologies": "amazon",
"amazon data services": "amazon",
"amazon.com, inc.": "amazon",
"hetzner-": "hetzner",
"ovh": "ovh",
"google": "google",
"digitalocean": "digitalocean",
"sakura-": "sakura",
"us-linode-": "linode",
"linode-": "linode",
"contabo": "contabo",
"vultr holdings": "vultr",
"netcup": "netcup",
"centurylink communications": "centurylink",
"comcast cable": "comcast",
"dreamhost-": "dreamhost",
"microsoft corporation": "microsoft",
"gandi-": "gandi",
"cstnet-": "cstnet",
"vtcdigicom-": "vtcdigicom",
"idcf": "idcfrontier",
"octopuce-": "octopuce",
"as12876": "scaleway",
"facebook": "facebook",
"twitter": "twitter"
}
WorkerResult = namedtuple('WorkerResult', ['hostname', 'v4', 'v6', 'asn'])
CleanupStats = namedtuple('CleanupStats', ['ip', 'no_ip', 'asn'])
def read_instances(filename: str) -> dict:
with open(filename, "r") as fh:
return json.load(fh)
def map_whois_to_hoster(item: str) -> [str, None]:
for hoster in HOSTER_MAP:
if hoster in item.lower(): # match substrings
return HOSTER_MAP[hoster]
# If not found, parse ASN name to find fitting name
tokens = item.split(" ")
for token in tokens:
if token.isupper(): # Find netname which is mostly the upper case string
new_hoster = token.lower()
# hoster_map[new_hoster] = new_hoster
if new_hoster not in hoster_new_created:
hoster_new_created[new_hoster] = []
hoster_new_created[new_hoster].append(item)
return new_hoster
# If all else fails, return None
return None
def cleanup_cachefiles() -> CleanupStats:
"""
Cleans up the cache files based on the entries timeouts
:return:
"""
global ip_cache, no_ip_cache, asn_cache
stats = [0, 0, 0]
# temporary list of cleanup candidates
deletion_candidates = []
# load IP cache
if os.path.exists(CACHEFILE_IP):
with open(CACHEFILE_IP, "r") as fh:
ip_cache = json.load(fh)
# clean up IP cache
for hostname in ip_cache:
if ip_cache[hostname]["timestamp"] < (time.time() - 60 * 60): # one hour
# exceeded timeout
deletion_candidates.append(hostname)
for can in deletion_candidates:
del ip_cache[can]
stats[0] = len(deletion_candidates)
deletion_candidates.clear()
# load cache with hosters which could not be resolved in previous runs
if os.path.exists(CACHEFILE_NOIP):
with open(CACHEFILE_NOIP, "r") as fh:
no_ip_cache = json.load(fh)
for hostname in no_ip_cache:
if no_ip_cache[hostname] < (time.time() - 60 * 60 * 3): # three hours
# timeout limit exceeded, hostname will be tried again
deletion_candidates.append(hostname)
for can in deletion_candidates:
del no_ip_cache[can]
stats[1] = len(deletion_candidates)
deletion_candidates.clear()
# load and clean cache file with ASN mappings
if os.path.exists(CACHEFILE_ASN):
with open(CACHEFILE_ASN, "r") as fh:
asn_cache = json.load(fh)
for hostname in asn_cache:
if asn_cache[hostname]["timestamp"] < (time.time() - 60 * 60 * 6): # six hours
deletion_candidates.append(hostname)
for can in deletion_candidates:
del asn_cache[can]
stats[2] = len(deletion_candidates)
return CleanupStats(*stats)
def worker(hostnames: list) -> [WorkerResult]:
results = []
for hostname in hostnames:
v4, v6 = hostname_to_ips(hostname)
if hostname in asn_cache:
asn: list = asn_cache[hostname]["asn"]
else:
asn = []
for ip in v4:
asn += ip2asn.get_asn_of_ip(ip, ip_networks_ipv4)
for ip in v6:
asn += ip2asn.get_asn_of_ip(ip, ip_networks_ipv6)
results.append(WorkerResult(hostname, v4, v6, asn))
counter.update(len(hostnames))
return results
def hostname_to_ips(hostname: str) -> tuple:
if hostname in ip_cache:
# load IP addresses from cache
return ip_cache[hostname]["v4"], ip_cache[hostname]["v6"]
ipv4 = []
ipv6 = []
try:
for s in socket.getaddrinfo(hostname, None, proto=socket.IPPROTO_TCP):
if s[0] == socket.AF_INET:
ipv4.append(s[4][0])
if s[0] == socket.AF_INET6:
ipv6.append(s[4][0])
except socket.gaierror:
# [Errno -2] Name or service not known
pass
return ipv4, ipv6
if __name__ == "__main__":
# global variables
count_total = 0
count_cf = 0
count_cf_users = 0
not_identified = 0
analysed_instances = {}
seen_instances = {}
ip_cache = {}
skipped_no_ip = []
no_ip_cache = {}
asn_cache = {}
skipped_no_asn = []
skipped_multiple_asn = []
skipped_unknown_mapping = []
counters = {}
hoster_new_created = {}
# CLI arguments
parser = argparse.ArgumentParser()
parser.add_argument('--asn-ipv4', type=str, dest="asn_ipv4")
parser.add_argument('--asn-ipv6', type=str, dest="asn_ipv6")
parser.add_argument('--instances-list', type=str, dest="instances_list")
parser.add_argument("--limit", type=int, dest="instances_top_limit", default=30,
help="Limit of instances to look at, top X instances by users")
parser.add_argument("--output", type=str, dest="output_filename", default="analysis.csv",
help="Name of CSV output file")
parser.add_argument("--workers", type=int, dest="num_threads", default=NUM_WORKERS,
help="Amount of workers to use")
args = parser.parse_args()
limit = args.instances_top_limit
ip_networks_ipv4 = None
ip_networks_ipv6 = None
if args.asn_ipv4:
ip_networks_ipv4 = ip2asn.asnfile_init(args.asn_ipv4)
if args.asn_ipv6:
ip_networks_ipv6 = ip2asn.asnfile_init(args.asn_ipv6)
if not ip_networks_ipv4 and not ip_networks_ipv6:
exit("Use at least one of --ipv4-list or --ipv6-list")
instances = read_instances(args.instances_list)["instances"]
cleaned: CleanupStats = cleanup_cachefiles()
print("Cleanup: {} IPs, {} no-IPs, {} ASNs".format(*cleaned))
if limit == 0:
limit = len(instances)
# Run DNS resolution in multiple threads to bypass long-timed resolutions
# Run ASN mapping in multiple threads, involving dict lookup and conversion of types to IPAddress
counter = tqdm(desc="Analysing instances, running worker threads", total=limit, unit="instances")
pool = ThreadPool(NUM_WORKERS)
worker_results: [WorkerResult] = []
# To batch the worker payload, more than one hostname is passed to a worker to be processed.
# This also helps reducing the overhead for the progress bar, which uses locking for updates
hostname_batch = []
for instance in sorted(instances, key=lambda x: int(x["users"]), reverse=True)[:limit]:
hostname = instance["name"]
seen_instances[hostname] = instance
if hostname in no_ip_cache:
# Skip unresolvable hostnames, if they have failed in previous runs and are within a timeout limit
skipped_no_ip.append(instance)
counter.update()
continue
if hostname.startswith("you-think-your-fake"):
# Skip instances with faked statistics
counter.update()
continue
hostname_batch.append(hostname)
if len(hostname_batch) >= 10:
# Start full batch
worker_results.append(pool.apply_async(worker, args=(hostname_batch,)))
hostname_batch = [] # reset
continue
if len(hostname_batch):
# last items which do not fill a batch
worker_results.append(pool.apply_async(worker, args=(hostname_batch,)))
pool.close()
pool.join()
counter.close()
# Re-struct the results, fetching and unpacking each WorkerResult list from the thread result
worker_results = [] + [item for r in worker_results for item in r.get()]
# Map ASNs by hostname to a common name, removing duplicates
bar = tqdm(desc="Analysing instances, mapping ASNs", total=len(worker_results))
for wr in worker_results:
hostname = wr.hostname
instance = seen_instances[hostname]
bar.update()
if len(wr.v4) + len(wr.v6) == 0:
# print(f"No IPs found for instance {hostname}")
skipped_no_ip.append(instance) # do this here to avoid problems with threaded access
no_ip_cache[hostname] = time.time()
continue
# Add the IP address resolution to the cache, if entry does not exist
if hostname not in ip_cache:
# timeout is handled before, after load from file
ip_cache[hostname] = {
"v4": wr.v4,
"v6": wr.v6,
"timestamp": time.time()
}
# Process ASN, either load from cache or proceed with examination
if len(wr.asn) == 0:
# print(f"ASN for {hostname} is of length 0")
skipped_no_asn.append(instance)
continue
# map ASNs to name cluster (merge multiple names for the same provider into one)
# using set() to remove duplicate network names
hoster = set([map_whois_to_hoster(item["name"]) for item in wr.asn])
if len(hoster) > 1:
# print(f"Instance {hostname} has more than one hosting ASN!")
# print("{name}:\t{networks}".format(name=hostname, networks=", ".join(hoster)))
skipped_multiple_asn.append(instance)
continue
hoster = hoster.pop()
if hoster is None:
skipped_unknown_mapping.append((instance, wr.asn[0]))
continue
if hostname not in asn_cache:
asn_cache[hostname] = {
"asn": [
{"name": asn["name"],
"asn": asn["asn"],
"country": asn["country"],
"start": asn["start"].exploded,
"end": asn["end"].exploded
} for asn in wr.asn], # convert IP addresses back to strings for json.dump
"timestamp": time.time()
}
if hoster not in counters:
counters[hoster] = []
counters[hoster].append(hostname)
analysed_instances[hostname] = instance
bar.close()
# save caches to persistent files
with open(CACHEFILE_IP, "w") as fh:
json.dump(ip_cache, fh)
with open(CACHEFILE_NOIP, "w") as fh:
json.dump(no_ip_cache, fh)
with open(CACHEFILE_ASN, "w") as fh:
json.dump(asn_cache, fh)
if skipped_no_ip or skipped_no_asn or skipped_multiple_asn:
print(f"Skipped instances: {len(skipped_no_ip)} because of no IP (including cached), "
f"{len(skipped_no_asn)} because no ASN were found and "
f"{len(skipped_multiple_asn)} because multiple ASNs were found")
if skipped_unknown_mapping:
for instance, asn in skipped_unknown_mapping:
print(f"Instance {instance['name']} skipped because ASN '{asn['name']}' could not be mapped")
for new_hoster, asns in hoster_new_created.items():
if len(asns) > 1:
print(f"New hoster {new_hoster} created by multiple ASNs: {set(asns)} (total {len(asns)})")
x, y1, y2 = [], [], []
# Providers with 6-20 instances
medium_hosters_instances, medium_hosters_users = 0, 0
# Providers with 2-5 instances
small_hosters_instances, small_hosters_users = 0, 0
# At some point hosters will appear which only host one single instance. Merge them into one provider
single_hosters_instances, single_hoster_users = 0, 0
for hoster, hosted_instances in sorted(counters.items(), key=lambda x: len(x[1]), reverse=True):
hosted_users = 0
for instance in hosted_instances:
hosted_users += int(analysed_instances[instance]["users"])
percent_instances = round(len(hosted_instances) / len(analysed_instances) * 100, 2)
hi = len(hosted_instances)
if hi == 1:
# Add values to cumulated "others" provider
single_hosters_instances += 1
single_hoster_users += hosted_users
continue
if hi <= 9:
small_hosters_instances += hi
small_hosters_users += hosted_users
continue
if hi <= 18:
medium_hosters_instances += hi
medium_hosters_users += hosted_users
continue
# Hosters with >20 instances
x.append(f"{hoster} ({percent_instances}%)")
y1.append(len(hosted_instances))
y2.append(hosted_users)
# Append medium hosters
x.append("(10-18)")
y1.append(medium_hosters_instances)
y2.append(medium_hosters_users)
# Append small hosters as single hoster
x.append("(2-9)")
y1.append(small_hosters_instances)
y2.append(small_hosters_users)
# At the end, add the "others" provider with the sum of hosted users
x.append("(1)")
y1.append(single_hosters_instances)
y2.append(single_hoster_users)
# print(x, y1, y2)
plot_by_instances(x, y1, y2)
# Iterate again, this time sorting by users
# We cannot re-use the data above, since the aggregation of multiple providers into groups (single, small,
# medium) might hide big instances, which we would like to examine in this next step.
for user_category in ["users", "active_users"]:
hosters = {}
# use if/else because dead instances don't have a value for active_users
total_users_fediverse = sum([int(insta[user_category] if insta[user_category] else 0)
for insta in analysed_instances.values()])
for hoster, hosted_instances in sorted(counters.items(), key=lambda x: len(x[1]), reverse=True):
hosted_users = sum([int(analysed_instances[instance][user_category]) # amount
if analysed_instances[instance][user_category] else 0 # if not None
for instance in hosted_instances]) # for each instance at this provider
percent_users = round(hosted_users / total_users_fediverse * 100, 2)
hosters[f"{hoster} ({percent_users}%)"] = {
"users": hosted_users,
"instances": len(hosted_instances)
}
x, y1, y2 = [], [], [] # reset
others = 0
others_users = 0
others_instances = 0
total_users = 0
total_instances = 0
for hoster, data in sorted(hosters.items(), key=lambda x: x[1]["users"], reverse=True):
hosted_users = data["users"]
hosted_instances = data["instances"]
total_users += hosted_users
total_instances += hosted_instances
if len(x) >= 20:
others += 1
others_users += hosted_users
others_instances += hosted_instances
continue
x.append(hoster)
y1.append(hosted_users)
y2.append(hosted_instances)
x.append("Others ({})".format(others))
y1.append(others_users)
y2.append(others_instances)
plot_by_users(x, y1, y2) if user_category == "users" else plot_by_active_users(x, y1, y2)
# Markdown export hack
print("\n\nMarkdown export\n\n| Hoster | Users | U% | Instances | I% |")
print("|" + "---|" * 5)
lines = 0
for hoster, data in sorted(hosters.items(), key=lambda x: x[1]["users"], reverse=True):
if lines > 20:
break
hosted_users = data["users"]
hosted_instances = data["instances"]
print("| {hoster} | {users} | {users_p}% | {instances} | {instances_p}% |".format(
hoster=hoster,
users=hosted_users, users_p=round(hosted_users/total_users*100, 2),
instances=hosted_instances, instances_p=round(hosted_instances/total_instances*100, 2)
))
lines += 1
print(f"\n\nWriting CSV file to {args.output_filename}")
with open(args.output_filename, "w") as fh:
csvwriter = csv.writer(fh, delimiter=',')
csvwriter.writerow(["instance",
"users", "active_users",
"statuses", "connections",
"ipv6", "hoster",
"hosted_instances", "percent_instances",
"hosted_users", "percent_users"])
for hoster, hostnames in sorted(counters.items(), key=lambda x: len(x[1]), reverse=True):
hosted_users = 0
for hostname in hostnames:
hosted_users += int(analysed_instances[hostname]["users"])
percent_users = round(hosted_users / total_users * 100, 3)
percent_instances = round(len(hostnames) / len(analysed_instances) * 100, 3)
# print(hoster, len(hostnames), round(len(hostnames) / len(analysed_instances) * 100, 3),
# hosted_users, percent_users)
for hostname in hostnames:
csvwriter.writerow([
hostname,
analysed_instances[hostname]["users"], analysed_instances[hostname]["active_users"],
analysed_instances[hostname]["statuses"], analysed_instances[hostname]["connections"],
analysed_instances[hostname]["ipv6"], hoster,
len(hostnames), percent_instances,
hosted_users, percent_users])
# experiment 1: check IPs which host more than 10 instances
ip_groups = experiments.check_multihost(ip_cache, asn_cache)
for ip, data in sorted(ip_groups.items(), key=lambda x: len(x[1]["instances"]), reverse=True)[:5]:
hoster = data["as"]
hostnames = data["instances"]
if len(hostnames) > 10:
print(f"\nIP {ip} ({hoster}) hosts {len(hostnames)} instances: {hostnames}")