|
| 1 | +from math import prod |
| 2 | +from typing import Optional, Sequence, Tuple |
| 3 | + |
| 4 | +import torch |
| 5 | + |
| 6 | +_IS_TORCH_GTE_24 = False |
| 7 | + |
| 8 | +if hasattr(torch.library, "register_fake"): |
| 9 | + _IS_TORCH_GTE_24 = True |
| 10 | + register_fake = torch.library.register_fake |
| 11 | + register_kernel = torch.library.register_kernel |
| 12 | +else: |
| 13 | + # PyTorch <= 2.3 |
| 14 | + register_fake = torch.library.impl_abstract |
| 15 | + register_kernel = torch.library.impl |
| 16 | + |
| 17 | + |
| 18 | +# Higher level op: int8 matmul + dequant + bias |
| 19 | +torch.library.define( |
| 20 | + "bitsandbytes::int8_scaled_mm", |
| 21 | + "(Tensor A, Tensor B, Tensor row_stats, Tensor col_stats, Tensor? bias=None, ScalarType dtype=float16) -> Tensor", |
| 22 | +) |
| 23 | + |
| 24 | + |
| 25 | +@register_fake("bitsandbytes::int8_scaled_mm") |
| 26 | +def _( |
| 27 | + A: torch.Tensor, |
| 28 | + B: torch.Tensor, |
| 29 | + row_stats: torch.Tensor, |
| 30 | + col_stats: torch.Tensor, |
| 31 | + bias: Optional[torch.Tensor] = None, |
| 32 | + dtype=torch.float16, |
| 33 | +) -> torch.Tensor: |
| 34 | + shapeC = (*A.shape[:-1], B.shape[0]) |
| 35 | + return torch.empty(shapeC, device=A.device, dtype=dtype) |
| 36 | + |
| 37 | + |
| 38 | +torch.library.define( |
| 39 | + "bitsandbytes::int8_linear_matmul", |
| 40 | + "(Tensor A, Tensor B) -> Tensor", |
| 41 | +) |
| 42 | + |
| 43 | + |
| 44 | +@register_fake("bitsandbytes::int8_linear_matmul") |
| 45 | +def _(A: torch.Tensor, B: torch.Tensor): |
| 46 | + torch._check(A.dtype == torch.int8, lambda: "A must be int8") |
| 47 | + torch._check(B.dtype == torch.int8, lambda: "B must be int8") |
| 48 | + shapeC = (*A.shape[:-1], B.shape[0]) |
| 49 | + return torch.empty(shapeC, device=A.device, dtype=torch.int32) |
| 50 | + |
| 51 | + |
| 52 | +# More info on `out` overloads: |
| 53 | +# https://github.com/pytorch/pytorch/issues/125044 |
| 54 | +torch.library.define( |
| 55 | + "bitsandbytes::int8_linear_matmul.out", |
| 56 | + "(Tensor A, Tensor B, Tensor! out) -> ()", |
| 57 | +) |
| 58 | + |
| 59 | + |
| 60 | +@register_fake("bitsandbytes::int8_linear_matmul.out") |
| 61 | +def _(A: torch.Tensor, B: torch.Tensor, out: torch.Tensor): |
| 62 | + shapeC = (*A.shape[:-1], B.shape[0]) |
| 63 | + |
| 64 | + torch._check(A.dtype == torch.int8, lambda: "A must be int8") |
| 65 | + torch._check(B.dtype == torch.int8, lambda: "B must be int8") |
| 66 | + torch._check(out.shape == shapeC, lambda: f"Expected out.shape == {shapeC}, got {out.shape}") |
| 67 | + torch._check(out.device == A.device, lambda: f"Expected out.device == {A.device}, got {out.device}") |
| 68 | + torch._check(out.dtype == torch.int32, lambda: f"Expected out.dtype == int32, got {out.dtype}") |
| 69 | + |
| 70 | + |
| 71 | +torch.library.define( |
| 72 | + "bitsandbytes::int8_vectorwise_quant", |
| 73 | + "(Tensor A, float threshold=0.0) -> (Tensor, Tensor, Tensor?)", |
| 74 | +) |
| 75 | + |
| 76 | + |
| 77 | +@register_fake("bitsandbytes::int8_vectorwise_quant") |
| 78 | +def _(A: torch.Tensor, threshold=0.0): |
| 79 | + out_row = torch.empty(A.shape, device=A.device, dtype=torch.int8) |
| 80 | + row_stats = torch.empty(prod(A.shape[:-1]), device=A.device, dtype=torch.float32) |
| 81 | + |
| 82 | + if threshold == 0.0: |
| 83 | + return out_row, row_stats, None |
| 84 | + |
| 85 | + outlier_cols = torch.library.get_ctx().new_dynamic_size() |
| 86 | + |
| 87 | + return out_row, row_stats, A.new_empty(outlier_cols, dtype=torch.int64) |
| 88 | + |
| 89 | + |
| 90 | +torch.library.define("bitsandbytes::int8_vectorwise_dequant", "(Tensor A, Tensor stats) -> Tensor") |
| 91 | + |
| 92 | + |
| 93 | +@register_fake("bitsandbytes::int8_vectorwise_dequant") |
| 94 | +def _(A: torch.Tensor, stats: torch.Tensor) -> torch.Tensor: |
| 95 | + torch._check(A.dtype == torch.int8, lambda: "A must be int8") |
| 96 | + return torch.empty_like(A, dtype=torch.float32) |
| 97 | + |
| 98 | + |
| 99 | +# Default PyTorch-native implementation |
| 100 | +@register_kernel("bitsandbytes::int8_vectorwise_dequant", None) |
| 101 | +def _(A: torch.Tensor, stats: torch.Tensor): |
| 102 | + # To dequantize we divide by 127, or multiply by the reciprocal. |
| 103 | + return A * stats.view(-1, 1) * 7.874015718698502e-3 |
| 104 | + |
| 105 | + |
| 106 | +torch.library.define( |
| 107 | + "bitsandbytes::int8_mm_dequant", |
| 108 | + "(Tensor A, Tensor row_stats, Tensor col_stats, ScalarType dtype=float16, Tensor? bias=None) -> Tensor", |
| 109 | +) |
| 110 | + |
| 111 | + |
| 112 | +@register_fake("bitsandbytes::int8_mm_dequant") |
| 113 | +def _( |
| 114 | + A: torch.Tensor, |
| 115 | + row_stats: torch.Tensor, |
| 116 | + col_stats: torch.Tensor, |
| 117 | + dtype=torch.float16, |
| 118 | + bias: Optional[torch.Tensor] = None, |
| 119 | +) -> torch.Tensor: |
| 120 | + torch._check(A.dtype == torch.int32, lambda: "A must be int32") |
| 121 | + return torch.empty_like(A, dtype=dtype) |
| 122 | + |
| 123 | + |
| 124 | +torch.library.define( |
| 125 | + "bitsandbytes::int8_double_quant", |
| 126 | + "(Tensor A, float threshold=0.0) -> (Tensor, Tensor, Tensor, Tensor, Tensor?)", |
| 127 | +) |
| 128 | + |
| 129 | + |
| 130 | +@register_fake("bitsandbytes::int8_double_quant") |
| 131 | +def _( |
| 132 | + A: torch.Tensor, |
| 133 | + threshold=0.0, |
| 134 | +) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, Optional[torch.Tensor]]: |
| 135 | + out_row = torch.empty_like(A, dtype=torch.int8) |
| 136 | + out_col = torch.empty_like(A, dtype=torch.int8) |
| 137 | + row_stats = torch.empty(prod(A.shape[:-1]), device=A.device, dtype=torch.float32) |
| 138 | + col_stats = torch.empty(A.shape[-1], device=A.device, dtype=torch.float32) |
| 139 | + outlier_n = torch.library.get_ctx().new_dynamic_size() |
| 140 | + outlier_cols = A.new_empty(outlier_n, dtype=torch.int64) |
| 141 | + return out_row, out_col, row_stats, col_stats, outlier_cols |
| 142 | + |
| 143 | + |
| 144 | +torch.library.define( |
| 145 | + "bitsandbytes::dequantize_4bit", |
| 146 | + "(Tensor A, Tensor absmax, int blocksize, str quant_type, int[] shape, ScalarType dtype) -> Tensor", |
| 147 | +) |
| 148 | + |
| 149 | + |
| 150 | +@register_fake("bitsandbytes::dequantize_4bit") |
| 151 | +def _( |
| 152 | + A: torch.Tensor, |
| 153 | + absmax: torch.Tensor, |
| 154 | + blocksize: int, |
| 155 | + quant_type: str, |
| 156 | + shape: Sequence[int], |
| 157 | + dtype: torch.dtype, |
| 158 | +) -> torch.Tensor: |
| 159 | + torch._check_is_size(blocksize) |
| 160 | + return torch.empty(shape, dtype=dtype, device=A.device) |
| 161 | + |
| 162 | + |
| 163 | +torch.library.define( |
| 164 | + "bitsandbytes::dequantize_4bit.out", |
| 165 | + "(Tensor A, Tensor absmax, int blocksize, str quant_type, int[] shape, ScalarType dtype, Tensor! out) -> ()", |
| 166 | +) |
| 167 | + |
| 168 | + |
| 169 | +@register_fake("bitsandbytes::dequantize_4bit.out") |
| 170 | +def _( |
| 171 | + A: torch.Tensor, |
| 172 | + absmax: torch.Tensor, |
| 173 | + blocksize: int, |
| 174 | + quant_type: str, |
| 175 | + shape: Sequence[int], |
| 176 | + dtype: torch.dtype, |
| 177 | + out: torch.Tensor, |
| 178 | +) -> None: |
| 179 | + torch._check_is_size(blocksize) |
| 180 | + torch._check(out.shape == shape, lambda: f"Expected out.shape == {shape}, got {out.shape}") |
| 181 | + torch._check(out.device == A.device, lambda: f"Expected out.device == {A.device}, got {out.device}") |
| 182 | + torch._check(out.dtype == dtype, lambda: f"Expected out.dtype == {dtype}, got {out.dtype}") |
| 183 | + |
| 184 | + |
| 185 | +torch.library.define( |
| 186 | + "bitsandbytes::quantize_4bit", |
| 187 | + "(Tensor A, int blocksize, str quant_type, ScalarType quant_storage) -> (Tensor, Tensor)", |
| 188 | +) |
| 189 | + |
| 190 | + |
| 191 | +@register_fake("bitsandbytes::quantize_4bit") |
| 192 | +def _( |
| 193 | + A: torch.Tensor, blocksize: int, quant_type: str, quant_storage: torch.dtype |
| 194 | +) -> Tuple[torch.Tensor, torch.Tensor]: |
| 195 | + torch._check_is_size(blocksize) |
| 196 | + |
| 197 | + n = A.numel() |
| 198 | + blocks = -(n // -blocksize) |
| 199 | + absmax = torch.empty((blocks,), device=A.device, dtype=torch.float32) |
| 200 | + out = torch.empty(((n + 1) // (quant_storage.itemsize * 2), 1), device=A.device, dtype=quant_storage) |
| 201 | + return out, absmax |
| 202 | + |
| 203 | + |
| 204 | +torch.library.define( |
| 205 | + "bitsandbytes::dequantize_blockwise", |
| 206 | + "(Tensor A, Tensor absmax, Tensor code, int blocksize, ScalarType dtype) -> Tensor", |
| 207 | +) |
| 208 | + |
| 209 | + |
| 210 | +@register_fake("bitsandbytes::dequantize_blockwise") |
| 211 | +def _(A: torch.Tensor, absmax: torch.Tensor, code: torch.Tensor, blocksize: int, dtype: torch.dtype) -> torch.Tensor: |
| 212 | + torch._check_is_size(blocksize) |
| 213 | + torch._check(A.dtype == torch.uint8, lambda: f"A must be uint8, got {A.dtype}") |
| 214 | + return torch.empty_like(A, dtype=dtype) |
| 215 | + |
| 216 | + |
| 217 | +torch.library.define( |
| 218 | + "bitsandbytes::dequantize_blockwise.out", |
| 219 | + "(Tensor A, Tensor absmax, Tensor code, int blocksize, ScalarType dtype, Tensor! out) -> ()", |
| 220 | +) |
| 221 | + |
| 222 | + |
| 223 | +@register_fake("bitsandbytes::dequantize_blockwise.out") |
| 224 | +def _( |
| 225 | + A: torch.Tensor, absmax: torch.Tensor, code: torch.Tensor, blocksize: int, dtype: torch.dtype, out: torch.Tensor |
| 226 | +): |
| 227 | + torch._check_is_size(blocksize) |
| 228 | + torch._check(A.dtype == torch.uint8, lambda: f"A must be uint8, got {A.dtype}") |
| 229 | + torch._check(out.shape == A.shape, lambda: f"Expected out.shape == {A.shape}, got {out.shape}") |
| 230 | + torch._check(out.device == A.device, lambda: f"Expected out.device == {A.device}, got {out.device}") |
| 231 | + torch._check(out.dtype == dtype, lambda: f"Expected out.dtype == {dtype}, got {out.dtype}") |
| 232 | + |
| 233 | + |
| 234 | +torch.library.define("bitsandbytes::quantize_blockwise", "(Tensor A, Tensor code, int blocksize) -> (Tensor, Tensor)") |
| 235 | + |
| 236 | + |
| 237 | +@register_fake("bitsandbytes::quantize_blockwise") |
| 238 | +def _(A: torch.Tensor, code: torch.Tensor, blocksize: int) -> Tuple[torch.Tensor, torch.Tensor]: |
| 239 | + torch._check_is_size(blocksize) |
| 240 | + n = A.numel() |
| 241 | + blocks = -(n // -blocksize) |
| 242 | + absmax = torch.empty((blocks,), device=A.device, dtype=torch.float32) |
| 243 | + out = torch.empty_like(A, dtype=torch.uint8) |
| 244 | + return out, absmax |
| 245 | + |
| 246 | + |
| 247 | +torch.library.define( |
| 248 | + "bitsandbytes::gemv_4bit", |
| 249 | + "(Tensor A, Tensor B, int[] shapeB, Tensor absmax, Tensor code, int blocksize) -> Tensor", |
| 250 | +) |
| 251 | + |
| 252 | + |
| 253 | +@register_fake("bitsandbytes::gemv_4bit") |
| 254 | +def _( |
| 255 | + A: torch.Tensor, B: torch.Tensor, shapeB: Sequence[int], absmax: torch.Tensor, code: torch.Tensor, blocksize: int |
| 256 | +) -> torch.Tensor: |
| 257 | + torch._check_is_size(blocksize) |
| 258 | + torch._check(A.numel() == A.size(-1), lambda: f"A must be a vector with leading dimensions of 1, got {A.shape}") |
| 259 | + torch._check( |
| 260 | + A.dtype in [torch.float16, torch.bfloat16, torch.float32], |
| 261 | + lambda: f"A must be float16, bfloat16, or float32, got {A.dtype}", |
| 262 | + ) |
| 263 | + torch._check( |
| 264 | + B.dtype in [torch.uint8, torch.bfloat16, torch.float16, torch.float32], |
| 265 | + lambda: f"B must be backed by storage of type uint8, bfloat16, float16, or float32, got {B.dtype}", |
| 266 | + ) |
| 267 | + shape = (*A.shape[:-1], shapeB[0]) |
| 268 | + return torch.empty(shape, device=A.device, dtype=A.dtype) |
| 269 | + |
| 270 | + |
| 271 | +torch.library.define( |
| 272 | + "bitsandbytes::gemv_4bit.out", |
| 273 | + "(Tensor A, Tensor B, int[] shapeB, Tensor absmax, Tensor code, int blocksize, Tensor! out) -> ()", |
| 274 | +) |
| 275 | + |
| 276 | + |
| 277 | +@register_fake("bitsandbytes::gemv_4bit.out") |
| 278 | +def _( |
| 279 | + A: torch.Tensor, |
| 280 | + B: torch.Tensor, |
| 281 | + shapeB: Sequence[int], |
| 282 | + absmax: torch.Tensor, |
| 283 | + code: torch.Tensor, |
| 284 | + blocksize: int, |
| 285 | + out: torch.Tensor, |
| 286 | +) -> None: |
| 287 | + torch._check_is_size(blocksize) |
| 288 | + torch._check(A.numel() == A.size(-1), lambda: f"A must be a vector with leading dimensions of 1, got {A.shape}") |
| 289 | + torch._check( |
| 290 | + A.dtype in [torch.float16, torch.bfloat16, torch.float32], |
| 291 | + lambda: f"A must be float16, bfloat16, or float32, got {A.dtype}", |
| 292 | + ) |
| 293 | + torch._check( |
| 294 | + B.dtype in [torch.uint8, torch.bfloat16, torch.float16, torch.float32], |
| 295 | + lambda: f"B must be backed by storage of type uint8, bfloat16, float16, or float32, got {B.dtype}", |
| 296 | + ) |
| 297 | + torch._check( |
| 298 | + out.shape == (*A.shape[:-1], shapeB[0]), |
| 299 | + lambda: f"Expected out.shape == {(*A.shape[:-1], shapeB[0])}, got {out.shape}", |
| 300 | + ) |
| 301 | + torch._check(out.device == A.device, lambda: f"Expected out.device == {A.device}, got {out.device}") |
| 302 | + torch._check(out.dtype == A.dtype, lambda: f"Expected out.dtype == {A.dtype}, got {out.dtype}") |
0 commit comments