-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclip_vis.py
57 lines (51 loc) · 1.44 KB
/
clip_vis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import clip
import torch
import matplotlib.pyplot as plt
import numpy as np
from torchvision.datasets import CIFAR10
from sklearn.manifold import TSNE
import tqdm
# Load all cifiar10 dataset with label for tsne
cifar10 = CIFAR10(root="./data", download=True, train=False)
cifar10 = torch.utils.data.Subset(cifar10, range(1000))
# Load CLIP and CLIP Preprocess
device = "cuda" if torch.cuda.is_available() else "cpu"
clip, clip_preprocess = clip.load("ViT-B/32", device=device)
# Get image embedding
embeddings = []
labels = []
with torch.no_grad():
for image, label in tqdm.tqdm(cifar10):
clip_image = clip_preprocess(image).unsqueeze(0).to(device)
clip_image_embedding = clip.encode_image(clip_image)[0]
embeddings.append(clip_image_embedding.cpu().numpy())
labels.append(label)
# Get tsne
tsne = TSNE(n_components=2, random_state=0)
tsne_embeddings = np.array(tsne.fit_transform(np.array(embeddings)))
labels = np.array(labels)
# Plot tsne with label
plt.figure(figsize=(12, 12))
cifar_class = [
"plane",
"car",
"bird",
"cat",
"deer",
"dog",
"frog",
"horse",
"ship",
"truck",
]
for i, label in zip(range(10), cifar_class):
idx = np.where(labels == i)
plt.scatter(
tsne_embeddings[idx, 0], tsne_embeddings[idx, 1], marker=".", label=label
)
# Save the plot
plt.title("CLIP Image Embedding")
plt.xlabel("tsne_x")
plt.ylabel("tsne_y")
plt.legend()
plt.savefig("clip_tsne.png")