-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTesting.hs
203 lines (170 loc) · 6.61 KB
/
Testing.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
{-# LANGUAGE RecordWildCards, QuasiQuotes, OverloadedStrings #-}
module Testing where
import Text.RawString.QQ
import Data.List
import Types
import PrPrClass
import Parse
-- ===============================================================================================
ex i = case i of
1 -> "map f xs"
11 -> "map f (map g xs)"
12 -> "map (map (map f)) xsss"
15 -> "let t = foldl f a xs in t"
160 -> "let f = (*2) in foldl (+) 0 (map f xs)" -- C
170 -> "foldl f a xs + foldl g b ys"
210 -> "foldl (+) a xs"
-- ------------------------------------------------------------------------------------
220 -> unlines [ "let"
, " xss = split m xs,"
, " isum = \\a xs -> foldl (+) a xs"
, "in"
, " foldl isum 0 xss"
]
-- ------------------------------------------------------------------------------------
230 -> unlines [ "let"
, " xss = split m xs,"
, " dsum = foldl (+) 0"
, "in"
, " foldl (+) 0 (map dsum xss)"
]
-- ------------------------------------------------------------------------------------
240 -> unlines [ "let"
, " xss = split m xs,"
, " zeroes = replicate m 0,"
, " psum = zipWith (+)"
, "in"
, " foldl (+) 0 (foldl psum zeroes xss)"
]
250 -> " foldl (foldl (+)) 0 xss"
251 -> " foldl (+) 0 (map (foldl (+) 0) xss)"
252 -> " foldl (+) 0 (foldl (zipWith (+)) zs xss)"
-- ====================================================================================
-- Dotproduct, matrix multiplication
410 -> "foldl (+) 0 (zipWith (*) xs ys)"
412 -> "foldl (+) 0 (map (*2) xs)"
-- ====================================================================================
420 -> unlines [ "let " -- NOTE: uncurried dotprod !!
, " dpr = (foldl (\\c (a,b) -> c+a*b) 0) . zip"
, "in "
, " map (\\as -> map (\\bs -> dpr (as,bs)) (transpose qss)) pss"
]
-- ====================================================================================
4001 -> unlines [ "let"
, " vxv = \\xs ys -> foldl (+) 0 (zipWith (*) xs ys),"
, " mxv = \\xss ys -> map (\\xs -> vxv xs ys) xss,"
, " mxmA = \\xss yss -> map (mxv xss) (transpose yss)"
, "in"
, " mxmA xss yss"
]
4002 -> unlines [ "let"
, " vxv = \\xs ys -> foldl (+) 0 (zipWith (*) xs ys),"
, " vxm = \\xs yss -> map (vxv xs) (transpose yss),"
, " mxmB = \\xss yss -> map (\\xs -> vxm xs yss) xss"
, "in"
, " mxmB xss yss"
]
4003 -> unlines [ "let"
, " vxv = \\xs ys -> foldl (\\a (x,y) -> a+x*y) 0 (zip (xs,ys)),"
, " mxv = \\xss ys -> map (\\xs -> vxv xs ys) xss"
, "in"
, " mxv xss ys"
]
4004 -> unlines [ "let" -- mxm: variant 1
, " vxv = \\xs ys -> foldl (\\a (x,y) -> a+x*y) 0 (zip (xs,ys)),"
, " mxv = \\xss ys -> map (\\xs -> vxv xs ys) xss,"
, " mxm = \\xss yss -> transpose (map (mxv xss) (transpose yss))"
, "in"
, " mxm xss yss"
]
4005 -> unlines [ "let" -- mxm: variant 2
, " vxv = \\xs ys -> foldl (\\a (x,y) -> a+x*y) 0 (zip (xs,ys)),"
, " vxm = \\xs yss -> map (vxv xs) (transpose yss),"
, " mxm = \\xss yss -> map (\\xs -> vxm xs yss) xss"
, "in"
, " mxm xss yss"
]
-- =================================================================================
-- Testing the compiler and finding the boundaries of the syntax
5000 -> [r|
let
muller = \x y -> x * y,
muls = zipWith muller xs ys
in
fold (+) muls
|]
5001 -> [r|
let
a = let
b = 3,
c = 4
in
(b + c) * 4,
d = 3
in
mod a d
|]
5002 -> [r|
let
xs :: [Int],
ys :: [Int]
in
fold (+) xs ys
|]
5003 -> [r|
let
xs = [1, 2, 3],
yss = [[1, 2], [3, 4]],
zsss = [[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]]]
in
main a b c
|]
-- =================================================================================
-- Actual example programs
-- Later on there should be a "kernel-let" à la harlan
-- primitives: filter/reduce/map/plow/zipWith
-- Arbitrary constraints:
-- - List can only be global inputs
-- - List cannot be nested
-- - Global inputs can also be normal ints
-- - Functions can only have ints as input and int as output
-- - Top level expression has to be one of the primitives
-- - No lets except for the top-level let :-(
6003 -> [r|
let
ps :: [Int],
isEven = \x -> (mod x 2) == 0
in
filter isEven ps
|]
6004 -> [r|
let
xs :: [Int],
myMax = \x y -> if x > y then x else y
in
reduce myMax xs
|]
6005 -> [r|
let
xs :: [Int],
add :: Int,
sum = \x -> x + add + 5
in
map sum xs
|]
-- plow is a reduce-like name for scan?
6006 -> [r|
let
xs :: [Int],
a = 5
in
plow (\x z -> x + z) xs
|]
6007 -> [r|
let
xs :: [Int],
ys :: [Int],
myMin = \x y -> if x > y then y else x
in
zipWith myMin xs ys
|]