@@ -46,10 +46,10 @@ BOOST_AUTO_TEST_CASE_TEMPLATE(eigen_general, T, all_float_types) {
46
46
47
47
typedef typename fvar<T, n> fTn ;
48
48
Eigen::Matrix<fTn , dim, 1 > x;
49
- x[0 ] = - 1 ;
50
- x[1 ] = 0 ;
51
- x[2 ] = 1 ;
52
- x[3 ] = 5 ;
49
+ x[0 ] = make_fvar<T, n>(- 1 ) ;
50
+ x[1 ] = make_fvar<T, n>( 0 ) ;
51
+ x[2 ] = make_fvar<T, n>( 1 ) ;
52
+ x[3 ] = make_fvar<T, n>( 5 ) ;
53
53
54
54
Eigen::Matrix<fTn , dim, 1 > y1 , y2, y3, y4, y5;
55
55
y1 = sin (x);
@@ -132,7 +132,7 @@ BOOST_AUTO_TEST_CASE_TEMPLATE(eigen_scalar, T, all_float_types) {
132
132
constexpr size_t n = 4 ;
133
133
134
134
typedef typename fvar<T, n> fTn ;
135
- fTn x = 4 ;
135
+ fTn x = make_fvar<T, n>( 4 ) ;
136
136
Eigen::Matrix<fTn , dim, 1 > X;
137
137
Eigen::Matrix<fTn , dim, 1 > Z;
138
138
Eigen::Matrix<fTn , dim, dim> I = Eigen::Matrix<fTn , dim, dim>::Identity ();
@@ -171,7 +171,7 @@ BOOST_AUTO_TEST_CASE_TEMPLATE(eigen_vector, T, all_float_types) {
171
171
constexpr size_t n = 4 ;
172
172
173
173
typedef typename fvar<T, n> fTn ;
174
- fTn x = 5 ;
174
+ fTn x = make_fvar<T, n>( 5 ) ;
175
175
T xD0 = x.derivative (0 );
176
176
Eigen::Matrix<fTn , dim, 1 > X;
177
177
X[0 ] = 1 ;
@@ -231,7 +231,7 @@ BOOST_AUTO_TEST_CASE_TEMPLATE(eigen_determinant, T, all_float_types) {
231
231
constexpr size_t n = 1 ;
232
232
233
233
typedef typename fvar<T, n> fTn ;
234
- fTn x = 3 ;
234
+ fTn x = make_fvar<T, n>( 3 ) ;
235
235
T xD0 = x.derivative (0 );
236
236
Eigen::Matrix<fTn , dim, dim> M = 10 * Eigen::Matrix<fTn , dim, dim>::Random ();
237
237
M (0 , 3 ) = x;
0 commit comments