-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathapp.py
98 lines (78 loc) · 2.91 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import json
import logging
import re
from uuid import uuid4
import uvicorn
from fastapi.responses import RedirectResponse
from openai import OpenAI, AsyncOpenAI
from src.auditor import Auditor
from src.config import app, LOGGING_CONFIG
from src.datastructures import (
CheckResponse,
CheckRequest,
CheckResponseItem,
)
from src.datastructures import OpenAiModel
from src.llm import call_openai_lin
from src.prompts import (
check_prompt,
detect_language,
english_response
)
run_id = uuid4()
client = OpenAI()
async_client = AsyncOpenAI()
answer_pat = re.compile(r"\[ANSW\](.*)\[\/ANSW\]")
reason_pat = re.compile(r"\[REASON\](.*)\[\/REASON\]")
@app.get("/", include_in_schema=False)
async def docs_redirect():
"""
Redirects the root URL to the documentation URL.
:returns: RedirectResponse object pointing to the /docs URL
"""
return RedirectResponse(url="/docs")
@app.post("/check", response_model=CheckResponse)
def check_article_against_source(
request: CheckRequest, model: OpenAiModel = OpenAiModel.gpt4mini, output_language="German"
):
"""
The endpoint compares a given article chunk against a source using an AI model to determine its validity.
"""
# Detect language
messages = [{"role": "system", "content": detect_language}]
resp = call_openai_lin(prompt=request.source, messages=messages, client=client, model=model)
input_language = resp.choices[0].message.content
output_language = json.loads(input_language)['language']
system_prompt_check = check_prompt if output_language == "German" else check_prompt + english_response
fc = Auditor(request.source, request.chunk)
logging.info(
f"Input:\n{fc.input}\n\n" f"{len(fc.similar_para_id)} similar paragraph(s)\n"
)
answers = []
# Joining similar paragraphs
similar_paras = '\n\n'.join([fc.paragraphs[para_id] for para_id in fc.similar_para_id])
messages = [{"role": "system", "content": system_prompt_check}]
prompt = "Satz:\n" f"{fc.input}\n\n" "Ausgangstext:\n" f"{similar_paras}"
resp = call_openai_lin(prompt=prompt, messages=messages, client=fc.client, model=fc.model)
resp = resp.choices[0].message.content
reason = re.findall(reason_pat, resp)[0]
result = re.findall(answer_pat, resp)[0]
answers.append(
CheckResponseItem(
sentence=similar_paras,
reason=reason,
facts_in_source=result,
)
)
if (len(answers) == 0): # No paragraphs are similar enough to be compared by the LLM
reason = "Die Behauptung ist nicht im Text enthalten."
print(f'\nResult: {result}\nSentence: {request.chunk}\nReason: {reason}')
return CheckResponse(
id=request.id,
input_sentence=request.chunk,
reason=reason,
answers=answers,
result=result,
)
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=3000, log_config=LOGGING_CONFIG)