-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathYolo.py
70 lines (50 loc) · 2.6 KB
/
Yolo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# import the needed modules
import os
from matplotlib.pyplot import imshow
import scipy.io
import scipy.misc
import numpy as np
from PIL import Image
from keras import backend as K
from keras.models import load_model
# The below provided fucntions will be used from yolo_utils.py
from yolo_utils import read_classes, read_anchors, generate_colors, preprocess_image, draw_boxes
# The below functions from the yad2k library will be used
from yad2k.models.keras_yolo import yolo_head, yolo_eval
#Provide the name of the image that you saved in the images folder to be fed through the network
input_image_name = "high00001.jpg"
#Obtaining the dimensions of the input image
input_image = Image.open("images/" + input_image_name)
width, height = input_image.size
width = np.array(width, dtype=float)
height = np.array(height, dtype=float)
#Assign the shape of the input image to image_shapr variable
image_shape = (height, width)
#Loading the classes and the anchor boxes that are provided in the madel_data folder
class_names = read_classes("model_data/coco_classes.txt")
anchors = read_anchors("model_data/yolo_anchors.txt")
#Load the pretrained model. Please refer the README file to get info on how to obtain the yolo.h5 file
yolo_model = load_model("model_data/yolo.h5")
#Print the summery of the model
yolo_model.summary()
#Convert final layer features to bounding box parameters
yolo_outputs = yolo_head(yolo_model.output, anchors, len(class_names))
#Now yolo_eval function selects the best boxes using filtering and non-max suppression techniques.
# If you want to dive in more to see how this works, refer keras_yolo.py file in yad2k/models
boxes, scores, classes = yolo_eval(yolo_outputs, image_shape)
# Initiate a session
sess = K.get_session()
#Preprocess the input image before feeding into the convolutional network
image, image_data = preprocess_image("images/" + input_image_name, model_image_size = (608, 608))
#Run the session
out_scores, out_boxes, out_classes = sess.run([scores, boxes, classes],feed_dict={yolo_model.input:image_data,K.learning_phase(): 0})
#Print the results
print('Found {} boxes for {}'.format(len(out_boxes), input_image_name))
#Produce the colors for the bounding boxs
colors = generate_colors(class_names)
#Draw the bounding boxes
draw_boxes(image, out_scores, out_boxes, out_classes, class_names, colors)
#Apply the predicted bounding boxes to the image and save it in out/
image.save(os.path.join("out", input_image_name), quality=90)
output_image = scipy.misc.imread(os.path.join("out", input_image_name))
imshow(output_image)