-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatrix.cpp
461 lines (393 loc) · 11.9 KB
/
matrix.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
/*---------------------------------------------------------------------------*\
* matrix.cpp *
* Implementation of the Matrix class *
* *
* Written by: Colin Hamilton, Tufts University *
* Last Modified: May 8, 2014 *
* *
* Note on representation: *
* The matrix is a dynamic 2D array. The first dereference accesses a *
* particular row; the second dereference gives the cell within that row. *
* Accessing an element should thus be matrix[row][col]. *
* Thus, for allocating a new matrix, rows are allocated first, then *
* each given an array of [columns] cells. *
\*---------------------------------------------------------------------------*/
#include<iostream>
#include "fraction.h"
#include "matrix.h"
using namespace std;
/* Constructors allocate space for the matrix based on the size needed, *
* and initialize all values to zero. *
*/
Matrix::Matrix()
{
rows = 0;
cols = 0;
matrix = NULL;
}
Matrix::Matrix(int size)
{
Matrix(size, 1);
/* rows = size;
cols = 1;
matrix = new Fraction *[size];
for (int i = 0; i < size; i++) {
matrix[i] = new Fraction[1];
matrix[i][0] = 0;
}*/
}
Matrix::Matrix(int rows, int cols)
{
this->rows = rows;
this->cols = cols;
matrix = new Fraction *[rows];
for (int i = 0; i < rows; i++) {
matrix[i] = new Fraction[cols];
for (int j = 0; j < cols; j++) {
matrix[i][j] = 0;
}
}
}
Matrix::~Matrix()
{
for (int i = 0; i < rows; i++) {
delete [] matrix[i];
}
delete [] matrix;
}
Matrix::Matrix(const Matrix &rval)
{
rows = rval.rows;
cols = rval.cols;
matrix = new Fraction *[rows];
for (int i = 0; i < rows; i++) {
matrix[i] = new Fraction[cols];
for (int j = 0; j < cols; j++) {
matrix[i][j] = rval.matrix[i][j];
}
}
}
Matrix Matrix::operator=(Matrix rval)
{
for (int i = 0; i < rows; i++) {
delete [] matrix[i];
}
delete [] matrix;
rows = rval.rows;
cols = rval.cols;
matrix = new Fraction *[rows];
for (int i = 0; i < rows; i++) {
matrix[i] = new Fraction[cols];
for (int j = 0; j < cols; j++) {
matrix[i][j] = rval.matrix[i][j];
}
}
return *this;
}
Fraction Matrix::get(int row, int col)
{
if (validCoord(row, col)) return matrix[row][col];
return Fraction(1, 0);
}
void Matrix::set(int row, int col, Fraction val)
{
if (validCoord(row, col)) matrix[row][col] = val;
}
int Matrix::getRows()
{
return rows;
}
int Matrix::getCols()
{
return cols;
}
/* Arithmetic operators operate on every value in the matrix. *
*/
Matrix Matrix::operator-()
{
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
matrix[i][j] = -matrix[i][j];
}
}
return *this;
}
Matrix Matrix::operator+=(Matrix rval)
{
if (rows != rval.rows || cols != rval.cols) return Matrix();
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
matrix[i][j] += rval.matrix[i][j];
}
}
return *this;
}
Matrix Matrix::operator-=(Matrix rval)
{
if (rows != rval.rows || cols != rval.cols) return Matrix();
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
matrix[i][j] -= rval.matrix[i][j];
}
}
return *this;
}
Matrix Matrix::operator*=(Fraction rval)
{
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
matrix[i][j] *= rval;
}
}
return *this;
}
/* Matrix multiplication results in a matrix with as many rows as the left, *
* as many columns as the right. Each entry is the result of multiplying *
* the corresponding row on the left with the corresponding column on the *
* right. To do that, one adds the product of the first entries to the *
* product of the second entries, etc. *
*/
Matrix Matrix::operator*(Matrix rval)
{
if (cols == rval.rows) {
Matrix retVal(rows, rval.cols);
for (int i = 0; i < rows; i++) {
for (int j = 0; j < rval.cols; j++) {
Fraction val = 0;
for (int k = 0; k < cols; k++) {
val += matrix[i][k] * rval.matrix[k][j];
}
retVal.set(i, j, val);
}
}
return retVal;
} else {
return Matrix();
}
}
Matrix Matrix::operator*=(Matrix rval)
{
*this = *this * rval;
return *this;
}
/* Row operations are simple arithmetic / switching, checked for validity *
*/
void Matrix::switchRows(int r1, int r2)
{
if (validCoord(r1, 0) && validCoord(r2, 0)) {
Fraction *temp = matrix[r1];
matrix[r1] = matrix[r2];
matrix[r2] = temp;
}
}
/* A row cannot be multiplied by zero. */
void Matrix::multiplyRow(int row, Fraction factor)
{
if (validCoord(row, 0) && factor != 0) {
for (int j = 0; j < cols; j++) {
matrix[row][j] *= factor;
}
}
}
void Matrix::addRow(int first, Fraction factor, int second)
{
if (validCoord(first, 0) && validCoord(second, 0)) {
for (int j = 0; j < cols; j++) {
matrix[second][j] += matrix[first][j] * factor;
}
}
}
/* Returns the index of the next column without all zeros below a given *
* index. *
* The first argument represents the previous column; that is, where to *
* begin looking. *
* The second represents the first row to consider in each column. *
* Note: If there is no such column, returns cols, which is the highest *
* index plus one. *
*/
int Matrix::nextNonzero(int prev, int firstRow)
{
bool found = false;
int i, j;
for (j = prev + 1; j < cols && !found; j++) {
found = false;
for (i = firstRow; i < rows; i++) {
if (matrix[i][j] != 0) {
found = true;
break;
}
}
}
if (found) return j - 1;
else return cols;
}
/* Finds the entry in a given column with the highest absolute value. *
* Returns the index of the entry within the column; that is, its row. *
* The first argument representes the column to search within. *
* The second represents the row to begin searching at. The function will *
* only consider indices greater than or equal to this argument. *
* Note: If all entries are zero, returns -1, as there is no pivot in such *
* a column.
*/
int Matrix::getPivot(int col, int lastRow)
{
Fraction max = matrix[lastRow][col];
if (max < 0) max = -max;
int maxIndex = lastRow;
for (int i = lastRow + 1; i < rows; i++) {
if (matrix[i][col] > max) {
max = matrix[i][col];
maxIndex = i;
} else if (-1 * matrix[i][col] > max) {
max = -1 * matrix[i][col];
maxIndex = i;
}
}
if (max != 0) {
return maxIndex;
} else {
return -1;
}
}
/* Reduces the matrix, using row operations to turn it to reduced echelon *
* form. The algorithm is: *
* 1) Find the first nonzero row. *
* 2) Choose an entry to use as a pivot; switch its row with the top row. *
* 3) Turn the pivot to 1 by multiplying the row by the pivot's reciprocal. *
* 4) Use the pivot to eliminate entries above and below it through *
* row addition. *
* 5) Repeat from step one, ignoring the row that was just given a pivot. *
* Stop when all rows are filled and/or there are no more nonzero rows. *
*/
void Matrix::reduce()
{
int iMax = 0;
int current_row = 0;
for (int j = nextNonzero(-1, 0); j < cols; j = nextNonzero(j, current_row)) {
iMax = getPivot(j, current_row);
switchRows(current_row, iMax);
multiplyRow(current_row, matrix[current_row][j].reciprocal());
for (int i = current_row + 1; i < rows; i++) {
addRow(current_row, -1 * matrix[i][j], i);
}
for (int i = current_row - 1; i >= 0; i--) {
addRow(current_row, -1 * matrix[i][j], i);
}
current_row++;
}
}
/* Calculates the determinant of a matrix, which is only possible for a *
* square matrix. The algorithm uses row reduction as above, *
* with each step factoring into the calculation of the determinant. *
* 1) Switching rows changes the sign of the determinant each time. *
* 2) Multiplying a row by a constant multiplies the determinant by the *
* same constant. *
* 3) Adding a multiple of one row to another does not change the *
* determinant. *
* The result of this algorithm is a triangular matrix, the determinant of *
* which can be calculated by multiplying the diagonal entries. *
* In this algorithm, the diagonal entries will all be either 0 or 1. *
*/
Fraction Matrix::determinant()
{
if (rows != cols) return Fraction(1, 0);
Matrix temp = *this;
int iMax = 0;
int iterations = 0;
Fraction result = 1;
for (int j = nextNonzero(-1, 0); j < cols;
j = nextNonzero(j, iterations)) {
iMax = getPivot(j, iterations);
if (iterations != iMax) {
result = -result;
switchRows(iterations, iMax);
}
result *= matrix[iterations][j];
multiplyRow(iterations, matrix[iterations][j].reciprocal());
for (int i = iterations + 1; i < rows; i++) {
addRow(iterations, -1 * matrix[i][j], i);
}
iterations++;
}
/* In reduced echelon form, if the lower-right entry is not zero, no diagonal
entries are zero. If it is zero, the determinant is zero. */
result *= matrix[rows - 1][cols - 1];
*this = temp;
return result;
}
bool Matrix::validCoord(int row, int col)
{
return (row < rows && col < cols && row >= 0 && col >= 0);
}
void Matrix::print(ostream &stream)
{
print(stream, "");
}
void Matrix::print(ostream &stream, string lineStart)
{
// stream << rows << " x " << cols << endl;
if (rows == 0 || cols == 0) return;
int lengths[cols];
getColLengths(lengths);
for (int i = 0; i < rows; i++) {
stream << lineStart << "|";
for (int j = 0; j < cols; j++) {
if (!matrix[i][j].isNegative()) {
stream << " ";
}
matrix[i][j].print(stream);
int spaces = lengths[j] - matrix[i][j].length();
for (int k = 0; k <= spaces; k++) {
stream << " ";
}
if (matrix[i][j].isNegative()) {
stream << " ";
}
}
stream << "|" << endl;
}
}
/* Takes an array by reference, storing the size of the largest entry *
* (in terms of characters) in the respective array locations. *
* Used to line up the entries in a column, for printing. *
*/
void Matrix::getColLengths(int lens[])
{
for (int j = 0; j < cols; j++) {
lens[j] = colLen(j);
}
}
/* Finds the largest entry (in chars) in a column, which establishes the *
* width of the column, for printing. *
*/
int Matrix::colLen(int col)
{
int max = matrix[0][col].length();
if (matrix[0][col].isNegative()) max--;
for (int i = 1; i < rows; i++) {
int t = matrix[i][col].length();
if (matrix[i][col].isNegative()) t--;
if (t > max) max = t;
}
return max;
}
Matrix identityMatrix(int size)
{
Matrix r_val(size, size);
for (int i = 0; i < size; i++) {
r_val.set(i, i, 1);
}
return r_val;
}
Matrix transpose(Matrix m)
{
int cols = m.getRows();
int rows = m.getCols();
Matrix r_val(rows, cols);
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
r_val.set(i, j, m.get(j, i));
}
}
return r_val;
}