diff --git a/lda2vec/__init__.py b/lda2vec/__init__.py index 1f785b8b..f7682e01 100644 --- a/lda2vec/__init__.py +++ b/lda2vec/__init__.py @@ -1,10 +1,10 @@ -import dirichlet_likelihood -import embed_mixture -import tracking -import preprocess -import corpus -import topics -import negative_sampling +import lda2vec.dirichlet_likelihood +import lda2vec.embed_mixture +import lda2vec.tracking +import lda2vec.preprocess +import lda2vec.corpus +import lda2vec.topics +import lda2vec.negative_sampling dirichlet_likelihood = dirichlet_likelihood.dirichlet_likelihood EmbedMixture = embed_mixture.EmbedMixture diff --git a/lda2vec/corpus.py b/lda2vec/corpus.py index b93aae0a..c46c7704 100644 --- a/lda2vec/corpus.py +++ b/lda2vec/corpus.py @@ -576,7 +576,7 @@ def compact_word_vectors(self, vocab, filename=None, array=None, choice = np.array(keys_raw)[idx][np.argmin(d)] # choice = difflib.get_close_matches(word, choices)[0] vector = model[choice] - print compact, word, ' --> ', choice + print(compact, word, ' --> ', choice) except IndexError: pass if vector is None: diff --git a/lda2vec/preprocess.py b/lda2vec/preprocess.py index fab84957..b6fbee42 100644 --- a/lda2vec/preprocess.py +++ b/lda2vec/preprocess.py @@ -1,4 +1,4 @@ -from spacy.en import English +from spacy.lang.en import English from spacy.attrs import LOWER, LIKE_URL, LIKE_EMAIL import numpy as np diff --git a/lda2vec/topics.py b/lda2vec/topics.py index 579ae7b1..daa6dfff 100644 --- a/lda2vec/topics.py +++ b/lda2vec/topics.py @@ -103,7 +103,7 @@ def print_top_words_per_topic(data, top_n=10, do_print=True): top_words = [data['vocab'][i].strip().replace(' ', '_') for i in top] msg = ' '.join(top_words) if do_print: - print prefix + msg + print(prefix + msg) lists.append(top_words) return lists