-
-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathsolutions.py
304 lines (233 loc) · 7.4 KB
/
solutions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
"""Methods for solutions of equations."""
import math
def bisection(f, a, b, toler, iter_max):
"""Calculate the root of an equation by the Bisection method.
Args:
f (function): equation f(x).
a (float): lower limit.
b (float): upper limit.
toler (float): tolerance (stopping criterion).
iter_max (int): maximum number of iterations (stopping criterion).
Returns:
root (float): root value.
iter (int): number of iterations used by the method.
converged (boolean): flag to indicate if the root was found.
"""
fa = f(a)
fb = f(b)
if fa * fb > 0:
raise ValueError("The function does not change signal at \
the ends of the given interval.")
delta_x = math.fabs(b - a) / 2
x = 0
converged = False
for i in range(0, iter_max + 1):
x = (a + b) / 2
fx = f(x)
print(f"i = {i:03d},\tx = {x:+.4f},\t", end="")
print(f"fx = {fx:+.4f},\tdx = {delta_x:+.4f}")
if delta_x <= toler and math.fabs(fx) <= toler:
converged = True
break
if fa * fx > 0:
a = x
fa = fx
else:
b = x
delta_x = delta_x / 2
root = x
return root, i, converged
def secant(f, a, b, toler, iter_max):
"""Calculate the root of an equation by the Secant method.
Args:
f (function): equation f(x).
a (float): lower limit.
b (float): upper limit.
toler (float): tolerance (stopping criterion).
iter_max (int): maximum number of iterations (stopping criterion).
Returns:
root (float): root value.
iter (int): number of iterations used by the method.
converged (boolean): flag to indicate if the root was found.
"""
fa = f(a)
fb = f(b)
if fb - fa == 0:
raise ValueError("f(b)-f(a) must be nonzero.")
if b - a == 0:
raise ValueError("b-a must be nonzero.")
if math.fabs(fa) < math.fabs(fb):
a, b = b, a
fa, fb = fb, fa
x = b
fx = fb
converged = False
for i in range(0, iter_max + 1):
delta_x = -fx / (fb - fa) * (b - a)
x += delta_x
fx = f(x)
print(f"i = {i:03d},\tx = {x:+.4f},\t", end="")
print(f"fx = {fx:+.4f},\tdx = {delta_x:+.4f}")
if math.fabs(delta_x) <= toler and math.fabs(fx) <= toler:
converged = True
break
a, b = b, x
fa, fb = fb, fx
root = x
return root, i, converged
def regula_falsi(f, a, b, toler, iter_max):
"""Calculate the root of an equation by the Regula Falsi method.
Args:
f (function): equation f(x).
a (float): lower limit.
b (float): upper limit.
toler (float): tolerance (stopping criterion).
iter_max (int): maximum number of iterations (stopping criterion).
Returns:
root (float): root value.
iter (int): number of iterations used by the method.
converged (boolean): flag to indicate if the root was found.
"""
fa = f(a)
fb = f(b)
if fa * fb > 0:
raise ValueError("The function does not change signal at \
the ends of the given interval.")
if fa > 0:
a, b = b, a
fa, fb = fb, fa
x = b
fx = fb
converged = False
for i in range(0, iter_max + 1):
delta_x = -fx / (fb - fa) * (b - a)
x += delta_x
fx = f(x)
print(f"i = {i:03d},\tx = {x:+.4f},\t", end="")
print(f"fx = {fx:+.4f},\tdx = {delta_x:+.4f}")
if math.fabs(delta_x) <= toler and math.fabs(fx) <= toler:
converged = True
break
if fx < 0:
a = x
fa = fx
else:
b = x
fb = fx
root = x
return root, i, converged
def pegasus(f, a, b, toler, iter_max):
"""Calculate the root of an equation by the Pegasus method.
Args:
f (function): equation f(x).
a (float): lower limit.
b (float): upper limit.
toler (float): tolerance (stopping criterion).
iter_max (int): maximum number of iterations (stopping criterion).
Returns:
root (float): root value.
iter (int): number of iterations used by the method.
converged (boolean): flag to indicate if the root was found.
"""
fa = f(a)
fb = f(b)
x = b
fx = fb
converged = False
for i in range(0, iter_max + 1):
delta_x = -fx / (fb - fa) * (b - a)
x += delta_x
fx = f(x)
print(f"i = {i:03d},\tx = {x:+.4f},\t", end="")
print(f"fx = {fx:+.4f},\tdx = {delta_x:+.4f}")
if math.fabs(delta_x) <= toler and math.fabs(fx) <= toler:
converged = True
break
if fx * fb < 0:
a = b
fa = fb
else:
fa = fa * fb / (fb + fx)
b = x
fb = fx
root = x
return root, i, converged
def muller(f, a, c, toler, iter_max):
"""Calculate the root of an equation by the Muller method.
Args:
f (function): equation f(x).
a (float): lower limit.
c (float): upper limit.
toler (float): tolerance (stopping criterion).
iter_max (int): maximum number of iterations (stopping criterion).
Returns:
root (float): root value.
iter (int): number of iterations used by the method.
converged (boolean): flag to indicate if the root was found.
"""
b = (a + c) / 2
fa = f(a)
fb = f(b)
fc = f(c)
x = b
fx = fb
delta_x = c - a
converged = False
for i in range(0, iter_max + 1):
h1 = c - b
h2 = b - a
r = h1 / h2
t = x
aa = (fc - (r + 1) * fb + r * fa) / (h1 * (h1 + h2))
bb = (fc - fb) / h1 - aa * h1
cc = fb
signal_bb = int(math.copysign(1, bb))
z = (-bb + signal_bb * math.sqrt(bb ** 2 - 4 * aa * cc)) / (2 * aa)
x = b + z
delta_x = x - t
fx = f(x)
print(f"i = {i:03d},\tx = {x:+.4f},\t", end="")
print(f"fx = {fx:+.4f},\tdx = {delta_x:+.4f}")
if math.fabs(delta_x) <= toler and math.fabs(fx) <= toler:
converged = True
break
if x > b:
a = b
fa = fb
else:
c = b
fc = fb
b = x
fb = fx
root = x
return root, i, converged
def newton(f, df, x0, toler, iter_max):
"""Calculate the root of an equation by the Newton method.
Args:
f (function): equation f(x).
df (function): derivative of quation f(x).
x0 (float): initial guess.
toler (float): tolerance (stopping criterion).
iter_max (int): maximum number of iterations (stopping criterion).
Returns:
root (float): root value.
iter (int): number of iterations used by the method.
converged (boolean): flag to indicate if the root was found.
"""
fx = f(x0)
dfx = df(x0)
x = x0
print(f"i = 000,\tx = {x:+.4f},\tfx = {fx:+.4f}")
converged = False
for i in range(1, iter_max + 1):
delta_x = -fx / dfx
x += delta_x
fx = f(x)
dfx = df(x)
print(f"i = {i:03d},\tx = {x:+.4f},\t", end="")
print(f"fx = {fx:+.4f},\tdx = {delta_x:+.4f}")
if math.fabs(delta_x) <= toler and math.fabs(fx) <= toler or dfx == 0:
converged = True
break
root = x
return root, i, converged