-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathSimdUtils.h
289 lines (250 loc) · 11.5 KB
/
SimdUtils.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
//-------------------------------------------------------------------------------------------------------
// Copyright (C) Microsoft Corporation and contributors. All rights reserved.
// Licensed under the MIT license. See LICENSE.txt file in the project root for full license information.
//-------------------------------------------------------------------------------------------------------
#pragma once
// The representations below assume little-endian.
#define SIMD_X 0
#define SIMD_Y 1
#define SIMD_Z 2
#define SIMD_W 3
#define FLOAT64_SIZE 8
#define FLOAT32_SIZE 4
#define INT32_SIZE 4
#define INT16_SIZE 2
#define INT8_SIZE 1
#define SIMD_INDEX_VALUE_MAX 5
#define SIMD_STRING_BUFFER_MAX 1024
#define SIMD_DATA \
Field(int32) i32[4];\
Field(int16) i16[8];\
Field(int8) i8[16];\
Field(uint32) u32[4];\
Field(uint16) u16[8];\
Field(uint8) u8[16];\
Field(float) f32[4];\
Field(double) f64[2]; \
Field(int64) i64[2];
#define SIMD_TEMP_SIZE 3
struct _SIMDValue
{
union{
SIMD_DATA
};
void SetValue(_SIMDValue value)
{
i32[SIMD_X] = value.i32[SIMD_X];
i32[SIMD_Y] = value.i32[SIMD_Y];
i32[SIMD_Z] = value.i32[SIMD_Z];
i32[SIMD_W] = value.i32[SIMD_W];
}
void Zero()
{
f64[SIMD_X] = f64[SIMD_Y] = 0;
}
bool operator==(const _SIMDValue& r) const
{
// don't compare f64/f32 because NaN bit patterns will not be considered equal.
return (this->i32[SIMD_X] == r.i32[SIMD_X] &&
this->i32[SIMD_Y] == r.i32[SIMD_Y] &&
this->i32[SIMD_Z] == r.i32[SIMD_Z] &&
this->i32[SIMD_W] == r.i32[SIMD_W]);
}
bool IsZero()
{
return (i32[SIMD_X] == 0 && i32[SIMD_Y] == 0 && i32[SIMD_Z] == 0 && i32[SIMD_W] == 0);
}
};
typedef _SIMDValue SIMDValue;
// For dictionary use
template <>
struct DefaultComparer<_SIMDValue>
{
__forceinline static bool Equals(_SIMDValue x, _SIMDValue y)
{
return x == y;
}
__forceinline static hash_t GetHashCode(_SIMDValue d)
{
return (hash_t)(d.i32[SIMD_X] ^ d.i32[SIMD_Y] ^ d.i32[SIMD_Z] ^ d.i32[SIMD_W]);
}
};
#if _M_IX86 || _M_AMD64
struct _x86_SIMDValue
{
union{
SIMD_DATA
__m128 m128_value;
__m128d m128d_value;
__m128i m128i_value;
};
static _x86_SIMDValue ToX86SIMDValue(const SIMDValue& val)
{
_x86_SIMDValue result;
result.m128_value = _mm_loadu_ps((float*) &val);
return result;
}
static SIMDValue ToSIMDValue(const _x86_SIMDValue& val)
{
SIMDValue result;
_mm_storeu_ps((float*) &result, val.m128_value);
return result;
}
};
#pragma warning(push)
#pragma warning(disable:4838) // conversion from 'unsigned int' to 'int32' requires a narrowing conversion
// These global values are 16-byte aligned.
const _x86_SIMDValue X86_ABS_MASK_F4 = { 0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff };
const _x86_SIMDValue X86_ABS_MASK_I4 = { 0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff };
const _x86_SIMDValue X86_ABS_MASK_D2 = { 0xffffffff, 0x7fffffff, 0xffffffff, 0x7fffffff };
const _x86_SIMDValue X86_NEG_MASK_F4 = { 0x80000000, 0x80000000, 0x80000000, 0x80000000 };
const _x86_SIMDValue X86_NEG_MASK_D2 = { 0x00000000, 0x80000000, 0x00000000, 0x80000000 };
const _x86_SIMDValue X86_ALL_ONES_F4 = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000 }; // {1.0, 1.0, 1.0, 1.0}
const _x86_SIMDValue X86_ALL_ONES_I4 = { 0x00000001, 0x00000001, 0x00000001, 0x00000001 }; // {1, 1, 1, 1}
const _x86_SIMDValue X86_ALL_ONES_D2 = { 0x00000000, 0x3ff00000, 0x00000000, 0x3ff00000 }; // {1.0, 1.0}
const _x86_SIMDValue X86_ALL_NEG_ONES = { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff };
const _x86_SIMDValue X86_ALL_NEG_ONES_F4 = { 0xBF800000, 0xBF800000, 0xBF800000, 0xBF800000 }; //-1.0, -1.0, -1.0, -1.0
const _x86_SIMDValue X86_ALL_ONES_I8 = { 0x00010001, 0x00010001, 0x00010001, 0x00010001 }; // {1, 1, 1, 1, 1, 1, 1, 1}
const _x86_SIMDValue X86_ALL_ZEROS = { 0x00000000, 0x00000000, 0x00000000, 0x00000000 };
const _x86_SIMDValue X86_ALL_ONES_I16 = { 0x01010101, 0x01010101, 0x01010101, 0x01010101 }; // {1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
const _x86_SIMDValue X86_LANE0_ONES_I16 = { 0x000000ff, 0x00000000, 0x00000000, 0x00000000 };
const _x86_SIMDValue X86_LOWBYTES_MASK = { 0x00ff00ff, 0x00ff00ff, 0x00ff00ff, 0x00ff00ff };
const _x86_SIMDValue X86_HIGHBYTES_MASK = { 0xff00ff00, 0xff00ff00, 0xff00ff00, 0xff00ff00 };
const _x86_SIMDValue X86_LANE_W_ZEROS = { 0xffffffff, 0xffffffff, 0xffffffff, 0x00000000 };
const _x86_SIMDValue X86_TWO_31_F4 = { 0x4f000000, 0x4f000000, 0x4f000000, 0x4f000000 }; // f32(2^31), ....
const _x86_SIMDValue X86_NEG_TWO_31_F4 = { 0xcf000000, 0xcf000000, 0xcf000000, 0xcf000000 }; // f32(-2^31), ....
const _x86_SIMDValue X86_TWO_32_F4 = { 0x4f800000, 0x4f800000, 0x4f800000, 0x4f800000 }; // f32(2^32), ....
const _x86_SIMDValue X86_TWO_31_I4 = X86_NEG_MASK_F4; // 2^31, ....
const _x86_SIMDValue X86_WORD_SIGNBITS = { 0x80008000, 0x80008000, 0x80008000, 0x80008000 };
const _x86_SIMDValue X86_DWORD_SIGNBITS = { 0x80000000, 0x80000000, 0x80000000, 0x80000000 };
const _x86_SIMDValue X86_BYTE_SIGNBITS = { 0x80808080, 0x80808080, 0x80808080, 0x80808080 };
const _x86_SIMDValue X86_4LANES_MASKS[] = {{ 0xffffffff, 0x00000000, 0x00000000, 0x00000000 },
{ 0x00000000, 0xffffffff, 0x00000000, 0x00000000 },
{ 0x00000000, 0x00000000, 0xffffffff, 0x00000000 },
{ 0x00000000, 0x00000000, 0x00000000, 0xffffffff }};
#pragma warning(pop)
#if ENABLE_NATIVE_CODEGEN && defined(ENABLE_WASM_SIMD)
// auxiliary SIMD values in memory to help JIT'ed code. E.g. used for Int8x16 shuffle.
extern _x86_SIMDValue X86_TEMP_SIMD[];
#endif
typedef _x86_SIMDValue X86SIMDValue;
CompileAssert(sizeof(X86SIMDValue) == 16);
#endif
typedef SIMDValue AsmJsSIMDValue; // alias for asmjs
CompileAssert(sizeof(SIMDValue) == 16);
class ValueType;
namespace Js {
enum class OpCode : ushort;
///////////////////////////////////////////////////////////////
//Class with static helper methods for manipulating SIMD Data.
///////////////////////////////////////////////////////////////
class SIMDUtils
{
public:
static uint32 inline SIMDGetShiftAmountMask(uint32 eleSizeInBytes) { return (eleSizeInBytes << 3) - 1; }
////////////////////////////////////////////
//SIMD Extract Lane / Replace Lane Helpers
////////////////////////////////////////////
static inline SIMDValue SIMD128InnerReplaceLaneF4(SIMDValue simdVal, const uint32 lane, const float value)
{
Assert(lane < 4);
simdVal.f32[lane] = value;
return simdVal;
};
static inline SIMDValue SIMD128InnerReplaceLaneD2(SIMDValue simdVal, const uint32 lane, const double value)
{
Assert(lane < 2);
simdVal.f64[lane] = value;
return simdVal;
};
static inline SIMDValue SIMD128InnerReplaceLaneI2(SIMDValue simdVal, const uint32 lane, const int64 value)
{
Assert(lane < 2);
simdVal.i64[lane] = value;
return simdVal;
};
static inline SIMDValue SIMD128InnerReplaceLaneI4(SIMDValue simdVal, const uint32 lane, const int32 value)
{
Assert(lane < 4);
simdVal.i32[lane] = value;
return simdVal;
};
static inline SIMDValue SIMD128InnerReplaceLaneI8(SIMDValue simdVal, const uint32 lane, const int16 value)
{
Assert(lane < 8);
simdVal.i16[lane] = value;
return simdVal;
};
static inline SIMDValue SIMD128InnerReplaceLaneI16(SIMDValue simdVal, const uint32 lane, const int8 value)
{
Assert(lane < 16);
simdVal.i8[lane] = value;
return simdVal;
};
static inline int32 SIMD128InnerExtractLaneB4(const SIMDValue src1, const uint32 lane)
{
Assert(lane < 4);
int val = SIMD128InnerExtractLaneI4(src1, lane);
return val ? 1 : 0;
};
static inline int16 SIMD128InnerExtractLaneB8(const SIMDValue src1, const uint32 lane)
{
Assert(lane < 8);
int16 val = SIMD128InnerExtractLaneI8(src1, lane);
return val ? 1 : 0;
};
static inline int8 SIMD128InnerExtractLaneB16(const SIMDValue src1, const uint32 lane)
{
Assert(lane < 16);
int8 val = SIMD128InnerExtractLaneI16(src1, lane);
return val ? 1 : 0;
};
static inline double SIMD128InnerExtractLaneD2(const SIMDValue src1, const uint32 lane) { Assert(lane < 2); return src1.f64[lane]; };
static inline float SIMD128InnerExtractLaneF4(const SIMDValue src1, const uint32 lane) { Assert(lane < 4); return src1.f32[lane]; };
static inline int64 SIMD128InnerExtractLaneI2(const SIMDValue src1, const uint32 lane) { Assert(lane < 2); return src1.i64[lane]; };
static inline int32 SIMD128InnerExtractLaneI4(const SIMDValue src1, const uint32 lane) { Assert(lane < 4); return src1.i32[lane]; };
static inline int16 SIMD128InnerExtractLaneI8(const SIMDValue src1, const uint32 lane) { Assert(lane < 8); return src1.i16[lane]; };
static inline int8 SIMD128InnerExtractLaneI16(const SIMDValue src1, const uint32 lane) { Assert(lane < 16); return src1.i8[lane]; };
static inline SIMDValue SIMD128BitSelect(const SIMDValue src1, const SIMDValue src2, const SIMDValue mask)
{
SIMDValue res{ 0 };
res.i32[0] = (src1.i32[0] & mask.i32[0]) | (src2.i32[0] & ~mask.i32[0]);
res.i32[1] = (src1.i32[1] & mask.i32[1]) | (src2.i32[1] & ~mask.i32[1]);
res.i32[2] = (src1.i32[2] & mask.i32[2]) | (src2.i32[2] & ~mask.i32[2]);
res.i32[3] = (src1.i32[3] & mask.i32[3]) | (src2.i32[3] & ~mask.i32[3]);
return res;
}
////////////////////////////////////////////
// SIMD Shuffle Swizzle helpers
////////////////////////////////////////////
static SIMDValue SIMD128InnerShuffle(const SIMDValue src1, const SIMDValue src2, uint32 laneCount, const uint32* lanes = nullptr);
///////////////////////////////////////////
// SIMD Type conversion
///////////////////////////////////////////
static SIMDValue FromSimdBits(const SIMDValue value);
///////////////////////////////////////////
// SIMD Data load/store
///////////////////////////////////////////
static SIMDValue SIMDLdData(const SIMDValue *data, uint8 dataWidth);
static void SIMDStData(SIMDValue *data, const SIMDValue simdValue, uint8 dataWidth);
template <typename T>
static SIMDValue CanonicalizeToBools(SIMDValue val)
{
#ifdef ENABLE_WASM_SIMD
CompileAssert(sizeof(T) <= sizeof(SIMDValue));
CompileAssert(sizeof(SIMDValue) % sizeof(T) == 0);
T* cursor = (T*)val.i8;
const uint maxBytes = 16;
uint size = maxBytes / sizeof(T);
for (uint i = 0; i < size; i++)
{
cursor[i] = cursor[i] ? (T) -1 : 0;
}
return val;
#else
return val;
#endif
}
static uint32 SimdOpcodeAsIndex(Js::OpCode op);
};
}