forked from wzmsltw/BSN-boundary-sensitive-network.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·820 lines (716 loc) · 35.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
from collections import defaultdict
from comet_ml import Experiment as CometExperiment, OfflineExperiment
import sys
sys.dont_write_bytecode = True
import os
import time
import json
import torch
import torchvision
import torch.nn.parallel
import torch.optim as optim
from torchsummary import summary
import numpy as np
import opts
from dataset import ThumosFeatures, ThumosImages, ProposalDataSet, GymnasticsSampler, GymnasticsImages, GymnasticsFeatures, ProposalSampler, VideoDataset
from models import TEM, PEM, partial_load, get_img_loader, AMDIMModel, get_video_transforms
from loss_function import TEM_loss_function, PEM_loss_function
import pandas as pd
from pgm import PGM_proposal_generation, PGM_feature_generation
from post_processing import BSN_post_processing
from post_processing2 import BSN_post_processing as BSN_post_processing2
from eval import evaluation_proposal
from eval2 import evaluation_proposal as evaluation_proposal2
import tem_jobs
def get_lr(optimizer):
for param_group in optimizer.param_groups:
return param_group['lr']
def compute_metrics(sums, loss, count):
values = {k: loss[k].cpu().detach().numpy()
for k in sums if k not in ['entries']}
for key in ['entries']:
if key in loss:
values[key] = loss[key]
new_sums = {k: v + sums[k] for k, v in values.items()}
avg = {k: v / count for k, v in new_sums.items()}
return new_sums, avg
def train_TEM(data_loader, model, optimizer, epoch, global_step, comet_exp, opt):
model.train()
if opt['do_representation'] and not opt['no_freeze']:
model.module.set_eval_representation()
count = 1
keys = ['action_loss', 'start_loss', 'end_loss', 'total_loss', 'cost', 'current_l2', 'action_positive', 'start_positive', 'end_positive', 'entries']
epoch_sums = {k: 0 for k in keys}
if comet_exp:
with comet_exp.train():
comet_exp.log_current_epoch(epoch)
start = time.time()
for n_iter, (input_data, label_action, label_start,
label_end) in enumerate(data_loader):
if time.time() - opt['start_time'] > opt['time']*3600 - 10 and comet_exp is not None:
comet_exp.end()
sys.exit(-1)
# for thumosimages, input_data shape: [bs, 100, 3, 176, 320]
# print('Just before tem input: ', type(input_data))
# print(input_data[0])
TEM_output = model(input_data)
loss = TEM_loss_function(label_action, label_start, label_end,
TEM_output, opt)
l2 = sum([(W**2).sum() for W in model.module.parameters()])
l2 = l2.sum() / 2
l2 = opt['tem_l2_loss'] * l2
loss['current_l2'] = l2
total_loss = loss['cost'] + l2
loss["total_loss"] = total_loss
optimizer.zero_grad()
if opt['do_gradient_checkpointing']:
model.zero_grad()
total_loss.backward()
# print(model.module.representation_model.backbone.inception_5b_3x3.weight[0][0])
optimizer.step()
global_step += 1
if n_iter % opt['tem_compute_loss_interval'] == 0:
epoch_sums, epoch_avg = compute_metrics(epoch_sums, loss, count)
count += 1
steps_per_second = 0
if n_iter > 10:
steps_per_second = (n_iter+1) / (time.time() - start)
epoch_avg['steps_per_second'] = steps_per_second
epoch_avg['current_lr'] = get_lr(optimizer)
# print({k: type(v) for k, v in epoch_avg.items()})
print('\nEpoch %d, S/S %.3f, Global Step %d, Local Step %d / %d.' % (epoch, steps_per_second, global_step, n_iter, len(data_loader)), flush=True)
s = ", ".join(['%s --> %.6f' % (key, epoch_avg[key]) for key in epoch_avg])
print("TEM avg: %s." % s, flush=True)
if comet_exp:
with comet_exp.train():
comet_exp.log_metrics(epoch_avg, step=global_step, epoch=epoch)
epoch_sums, epoch_avg = compute_metrics(epoch_sums, loss, count)
# steps_per_second = (n_iter+1) / (time.time() - start)
# epoch_avg['steps_per_second'] = steps_per_second
print('\n***End of Epoch %d***\nLearningRate: %.4f' % (epoch, get_lr(optimizer)), flush=True)
s = ", ".join(['%s --> %.6f' % (key.replace('_loss', '').replace('current_', '').capitalize(), epoch_avg[key]) for key in sorted(epoch_avg.keys())])
print("Train: %s." % s, flush=True)
if comet_exp:
with comet_exp.train():
comet_exp.log_metrics(epoch_avg, step=global_step, epoch=epoch)
comet_exp.log_epoch_end(epoch)
return global_step + 1
def test_TEM(data_loader, model, optimizer, epoch, global_step, comet_exp, opt):
model.eval()
keys = ['action_loss', 'start_loss', 'end_loss', 'total_loss', 'cost', 'action_positive', 'start_positive', 'end_positive', 'entries', 'current_l2']
epoch_sums = {k: 0 for k in keys}
for n_iter, (input_data, label_action, label_start,
label_end) in enumerate(data_loader):
if time.time() - opt['start_time'] > opt['time']*3600 - 10 and comet_exp is not None:
comet_exp.end()
sys.exit(-1)
TEM_output = model(input_data)
loss = TEM_loss_function(label_action, label_start, label_end,
TEM_output, opt)
l2 = sum([(W**2).sum() for W in model.module.parameters()])
l2 = l2.sum() / 2
l2 = opt['tem_l2_loss'] * l2
loss['current_l2'] = l2
total_loss = loss['cost'] + l2
loss["total_loss"] = total_loss
for k in keys:
if k == 'entries':
epoch_sums[k] += loss[k]
else:
epoch_sums[k] += loss[k].cpu().detach().numpy()
# if n_iter % opt['tem_compute_loss_interval'] == 0:
# print('\nTest - Local Step %d / %d.' % (n_iter, len(data_loader)))
epoch_values = {k: v / (n_iter + 1) for k, v in epoch_sums.items()}
if comet_exp:
with comet_exp.test():
comet_exp.log_metrics(epoch_values, step=global_step, epoch=epoch)
s = ", ".join(['%s --> %.6f' % (key.replace('_loss', '').replace('current_', '').capitalize(), epoch_values[key]) for key in sorted(epoch_values.keys())])
print("Test %s." % s, flush=True)
state = {
'epoch': epoch, 'global_step': global_step, 'state_dict': model.state_dict(),
'optimizer_dict': optimizer.state_dict()
}
save_dir = os.path.join(opt["checkpoint_path"], opt['name'])
if not os.path.exists(save_dir):
os.makedirs(save_dir, exist_ok=True)
total_loss = epoch_values['total_loss']
if total_loss < model.module.tem_best_loss:
model.module.tem_best_loss = total_loss
save_path = os.path.join(save_dir, 'tem_checkpoint.%d.pth' % epoch)
torch.save(state, save_path)
# save_path = os.path.join(save_dir, 'tem_best.%d.pth % epoch')
# torch.save(state, save_path)
def train_PEM(data_loader, model, optimizer, epoch, global_step, comet_exp, opt):
model.train()
count = 1
keys = ['iou_loss', 'current_l2', 'total_loss']
epoch_sums = {k: 0 for k in keys}
start = time.time()
for n_iter, (input_data, label_iou) in enumerate(data_loader):
if time.time() - opt['start_time'] > opt['time']*3600 - 10 and comet_exp is not None:
comet_exp.end()
sys.exit(-1)
PEM_output = model(input_data)
loss = PEM_loss_function(PEM_output, label_iou, opt)
l2 = sum([(W**2).sum() for W in model.module.parameters()])
l2 = l2.sum() / 2
l2 = opt['pem_l2_loss'] * l2
loss['current_l2'] = l2
loss['iou_loss'] *= 10
iou_loss = loss['iou_loss']
total_loss = iou_loss + l2
loss['total_loss'] = total_loss
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
global_step += 1
if n_iter % opt['pem_compute_loss_interval'] == 0:
epoch_sums, epoch_avg = compute_metrics(epoch_sums, loss, count)
count += 1
steps_per_second = 0
if n_iter > 10:
steps_per_second = (n_iter+1) / (time.time() - start)
epoch_avg['steps_per_second'] = steps_per_second
epoch_avg['current_lr'] = get_lr(optimizer)
# print('\nEpoch %d, S/S %.3f, Global Step %d, Local Step %d / %d.' % (epoch, steps_per_second, global_step, n_iter, len(data_loader)))
# s = ", ".join(['%s --> %.6f' % (key, epoch_avg[key]) for key in epoch_avg])
# print("PEM avg so far this epoch: %s." % s)
if comet_exp:
with comet_exp.train():
comet_exp.log_metrics(epoch_avg, step=global_step, epoch=epoch)
epoch_sums, epoch_avg = compute_metrics(epoch_sums, loss, count)
steps_per_second = (n_iter+1) / (time.time() - start)
# epoch_avg['steps_per_second'] = steps_per_second
print('\n***End of Epoch %d***\nLearningRate: %.4f' % (epoch, get_lr(optimizer)))
s = ", ".join(['%s --> %.6f' % (key.replace('current_', '').replace('_loss', '').capitalize(), epoch_avg[key]) for key in sorted(epoch_avg.keys())])
print("Train: %s." % s)
if comet_exp:
with comet_exp.train():
comet_exp.log_metrics(epoch_avg, step=global_step, epoch=epoch)
comet_exp.log_epoch_end(epoch)
return global_step + 1
def test_PEM(data_loader, model, epoch, global_step, comet_exp, opt):
model.eval()
keys = ['iou_loss', 'current_l2', 'total_loss']
epoch_sums = {k: 0 for k in keys}
for n_iter, (input_data, label_iou) in enumerate(data_loader):
if time.time() - opt['start_time'] > opt['time']*3600 - 10 and comet_exp is not None:
comet_exp.end()
sys.exit(-1)
PEM_output = model(input_data)
loss = PEM_loss_function(PEM_output, label_iou, opt)
l2 = sum([(W**2).sum() for W in model.module.parameters()])
l2 = l2.sum() / 2
l2 = opt['pem_l2_loss'] * l2
loss['current_l2'] = l2
loss['iou_loss'] *= 10
iou_loss = loss['iou_loss']
total_loss = iou_loss + l2
loss['total_loss'] = total_loss
for k in keys:
epoch_sums[k] += loss[k].cpu().detach().numpy()
epoch_values = {k : v / (n_iter + 1) for k, v in epoch_sums.items()}
if comet_exp:
with comet_exp.test():
comet_exp.log_metrics(epoch_values, step=global_step, epoch=epoch)
s = ", ".join(['%s --> %.06f' % (k.replace('current_', '').replace('_loss', '').capitalize(), epoch_values[k]) for k in sorted(keys)])
print("Test: %s." % s)
state = {'epoch': epoch, 'global_step': global_step, 'state_dict': model.state_dict()}
save_dir = os.path.join(opt["checkpoint_path"], opt['name'])
if not os.path.exists(save_dir):
os.makedirs(save_dir, exist_ok=True)
save_path = os.path.join(save_dir, 'pem_checkpoint.%d.pth' % epoch)
torch.save(state, save_path)
iou_loss = epoch_values['iou_loss']
if iou_loss < model.module.pem_best_loss:
model.module.pem_best_loss = iou_loss
save_path = os.path.join(save_dir, 'pem_best.pth')
torch.save(state, save_path)
def _maybe_load_checkpoint(model, optimizer, global_step, epoch, directory):
if not os.path.exists(directory):
print('NOT LAODING CHECKPOINT (nonexistent dir)')
return global_step, epoch
ckpts = os.listdir(directory)
if not ckpts:
print('NOT LAODING CHECKPOINT (empty dir)')
return global_step, epoch
print('HAVE ckpts: ', ckpts)
best_ckpt = sorted(ckpts, key=lambda k: int(k.split('.')[-2]), reverse=True)[0]
print('LOADING from ckpt!', directory, best_ckpt)
checkpoint = torch.load(os.path.join(directory, best_ckpt))
optimizer.load_state_dict(checkpoint['optimizer_dict'])
model.load_state_dict(checkpoint['state_dict'])
epoch = checkpoint['epoch']
global_step = checkpoint['global_step']
print('Epoch/Gss: ', epoch, global_step)
return epoch, global_step
def BSN_Train_TEM(opt):
global_step = 0
epoch = 0
if opt['do_representation']:
model = TEM(opt)
optimizer = optim.Adam(model.parameters(),
lr=opt["tem_training_lr"],
weight_decay=opt["tem_weight_decay"])
global_step, epoch = _maybe_load_checkpoint(
model, optimizer, global_step, epoch,
os.path.join(opt["checkpoint_path"], opt['name']))
if opt['representation_checkpoint']:
# print(model.representation_model.backbone.inception_5b_3x3.weight[0][0])
if opt['do_random_model']:
print('DOING RANDOM MDOEL!!!')
else:
print('DOING Pretrianed modelll!!!')
partial_load(opt['representation_checkpoint'], model)
# print(model.representation_model.backbone.inception_5b_3x3.weight[0][0])
if not opt['no_freeze']:
for param in model.representation_model.parameters():
param.requires_grad = False
print(len([p for p in model.representation_model.parameters()]))
else:
model = TEM(opt)
optimizer = optim.Adam(model.parameters(),
lr=opt["tem_training_lr"],
weight_decay=opt["tem_weight_decay"])
global_step, epoch = _maybe_load_checkpoint(
model, optimizer, global_step, epoch,
os.path.join(opt["checkpoint_path"], opt['name']))
model = torch.nn.DataParallel(model).cuda()
# summary(model, (2, 3, 224, 224))
print(' Total params: %.2fM' %
(sum(p.numel() for p in model.parameters()) / 1000000.0))
if opt['dataset'] == 'gymnastics':
# default image_dir is '/checkpoint/cinjon/spaceofmotion/sep052019/rawframes.426x240.12'
img_loading_func = get_img_loader(opt)
train_data_set = GymnasticsImages(
opt, subset='Train', img_loading_func=img_loading_func,
image_dir=opt['gym_image_dir'],
video_info_path = os.path.join(opt['video_info'], 'Train_Annotation.csv')
)
train_sampler = GymnasticsSampler(train_data_set, opt['sampler_mode'])
test_data_set = GymnasticsImages(
opt, subset="Val", img_loading_func=img_loading_func,
image_dir=opt['gym_image_dir'],
video_info_path = os.path.join(opt['video_info'], 'Val_Annotation.csv')
)
elif opt['dataset'] == 'gymnasticsfeatures':
# feature_dirs should roughly look like:
# /checkpoint/cinjon/spaceofmotion/sep052019/tsn.1024.426x240.12.no-oversample/csv/rgb,/checkpoint/cinjon/spaceofmotion/sep052019/tsn.1024.426x240.12.no-oversample/csv/flow
feature_dirs = opt['feature_dirs'].split(',')
train_data_set = GymnasticsFeatures(opt, subset='Train', feature_dirs=feature_dirs, video_info_path = os.path.join(opt['video_info'], 'Train_Annotation.csv'))
test_data_set = GymnasticsFeatures(opt, subset='Val', feature_dirs=feature_dirs, video_info_path = os.path.join(opt['video_info'], 'Val_Annotation.csv'))
train_sampler = None
elif opt['dataset'] == 'thumosfeatures':
feature_dirs = opt['feature_dirs'].split(',')
train_data_set = ThumosFeatures(opt, subset='Val', feature_dirs=feature_dirs)
test_data_set = ThumosFeatures(opt, subset="Test", feature_dirs=feature_dirs)
train_sampler = None
elif opt['dataset'] == 'thumosimages':
img_loading_func = get_img_loader(opt)
train_data_set = ThumosImages(
opt, subset='Val', img_loading_func=img_loading_func,
image_dir='/checkpoint/cinjon/thumos/rawframes.TH14_validation_tal.30',
video_info_path = os.path.join(opt['video_info'], 'Val_Annotation.csv')
)
test_data_set = ThumosImages(
opt, subset='Test', img_loading_func=img_loading_func,
image_dir='/checkpoint/cinjon/thumos/rawframes.TH14_test_tal.30',
video_info_path = os.path.join(opt['video_info'], 'Test_Annotation.csv')
)
train_sampler = None
elif opt['dataset'] == 'activitynet':
train_sampler = None
representation_module = opt['representation_module']
train_transforms = get_video_transforms(
representation_module, opt['do_augment'])
test_transforms = get_video_transforms(
representation_module, False)
train_data_set = VideoDataset(opt, train_transforms, subset='train', fraction=0.3)
# We use val because we don't have annotations for test.
test_data_set = VideoDataset(opt, test_transforms, subset='val', fraction=0.3)
print('train_loader / val_loader sizes: ', len(train_data_set), len(test_data_set))
train_loader = torch.utils.data.DataLoader(
train_data_set,
batch_size=model.module.batch_size,
shuffle=False if train_sampler else True,
sampler=train_sampler,
num_workers=opt['data_workers'],
pin_memory=True,
drop_last=False)
test_loader = torch.utils.data.DataLoader(
test_data_set,
batch_size=model.module.batch_size,
shuffle=False,
num_workers=opt['data_workers'],
pin_memory=True,
drop_last=False)
# test_loader = None
milestones = [int(k) for k in opt['tem_lr_milestones'].split(',')]
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=milestones, gamma=opt['tem_step_gamma'])
if opt['log_to_comet']:
comet_exp = CometExperiment(api_key="hIXq6lDzWzz24zgKv7RYz6blo",
project_name="bsn",
workspace="cinjon",
auto_metric_logging=True,
auto_output_logging=None,
auto_param_logging=False)
elif opt['local_comet_dir']:
comet_exp = OfflineExperiment(
api_key="hIXq6lDzWzz24zgKv7RYz6blo",
project_name="bsn",
workspace="cinjon",
auto_metric_logging=True,
auto_output_logging=None,
auto_param_logging=False,
offline_directory=opt['local_comet_dir'])
else:
comet_exp = None
if comet_exp:
comet_exp.log_parameters(opt)
comet_exp.set_name(opt['name'])
# test_TEM(test_loader, model, optimizer, 0, 0, comet_exp, opt)
for epoch in range(epoch+1, opt["tem_epoch"] + 1):
global_step = train_TEM(train_loader, model, optimizer, epoch, global_step, comet_exp, opt)
test_TEM(test_loader, model, optimizer, epoch, global_step, comet_exp, opt)
if opt['dataset'] == 'activitynet':
test_loader.dataset._subset_dataset(.3)
train_loader.dataset._subset_dataset(.3)
scheduler.step()
def BSN_Train_PEM(opt):
model = PEM(opt)
model = torch.nn.DataParallel(model).cuda()
optimizer = optim.Adam(model.parameters(),
lr=opt["pem_training_lr"],
weight_decay=opt["pem_weight_decay"])
print('Total params: %.2fM' %
(sum(p.numel() for p in model.parameters()) / 1000000.0))
def collate_fn(batch):
batch_data = torch.cat([x[0] for x in batch])
batch_iou = torch.cat([x[1] for x in batch])
return batch_data, batch_iou
train_dataset = ProposalDataSet(opt, subset="train")
train_sampler = ProposalSampler(train_dataset.proposals, train_dataset.indices, max_zero_weight=opt['pem_max_zero_weight'])
global_step = 0
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=model.module.batch_size,
shuffle=False,
sampler=train_sampler,
num_workers=opt['data_workers'],
pin_memory=True,
drop_last=False,
collate_fn=collate_fn if not opt['pem_do_index'] else None)
subset = "validation" if opt['dataset'] == 'activitynet' else "test"
test_loader = torch.utils.data.DataLoader(
ProposalDataSet(opt, subset=subset),
batch_size=model.module.batch_size,
shuffle=True,
num_workers=opt['data_workers'],
pin_memory=True,
drop_last=False,
collate_fn=collate_fn if not opt['pem_do_index'] else None)
milestones = [int(k) for k in opt['pem_lr_milestones'].split(',')]
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=milestones, gamma=opt['pem_step_gamma'])
if opt['log_to_comet']:
comet_exp = CometExperiment(api_key="hIXq6lDzWzz24zgKv7RYz6blo",
project_name="bsnpem",
workspace="cinjon",
auto_metric_logging=True,
auto_output_logging=None,
auto_param_logging=False)
elif opt['local_comet_dir']:
comet_exp = OfflineExperiment(
api_key="hIXq6lDzWzz24zgKv7RYz6blo",
project_name="bsnpem",
workspace="cinjon",
auto_metric_logging=True,
auto_output_logging=None,
auto_param_logging=False,
offline_directory=opt['local_comet_dir'])
else:
comet_exp = None
if comet_exp:
comet_exp.log_parameters(opt)
comet_exp.set_name(opt['name'])
test_PEM(test_loader, model, -1, -1, comet_exp, opt)
for epoch in range(opt["pem_epoch"]):
global_step = train_PEM(train_loader, model, optimizer, epoch, global_step, comet_exp, opt)
test_PEM(test_loader, model, epoch, global_step, comet_exp, opt)
scheduler.step()
def BSN_inference_TEM(opt):
output_dir = os.path.join(opt['tem_results_dir'], opt['checkpoint_path'].split('/')[-1])
print(sorted(opt.items()), flush=True)
model = TEM(opt)
checkpoint_epoch = opt['checkpoint_epoch']
if checkpoint_epoch is not None:
checkpoint_path = os.path.join(opt['checkpoint_path'], 'tem_checkpoint.%d.pth' % checkpoint_epoch)
output_dir = os.path.join(output_dir, 'ckpt.%d' % checkpoint_epoch)
else:
checkpoint_path = os.path.join(opt['checkpoint_path'], 'tem_best.pth')
output_dir = os.path.join(output_dir, 'ckpt.best')
if not os.path.exists(output_dir):
os.makedirs(output_dir)
print('Checkpoint path is ', checkpoint_path, flush=True)
checkpoint = torch.load(checkpoint_path)
base_dict = {
'.'.join(k.split('.')[1:]): v
for k, v in list(checkpoint['state_dict'].items())
}
model.load_state_dict(base_dict)
model = torch.nn.DataParallel(model).cuda()
model.eval()
if opt['dataset'] == 'gymnastics':
img_loading_func = get_img_loader(opt)
dataset = GymnasticsImages(
opt,
subset=opt['tem_results_subset'].title(),
img_loading_func=img_loading_func,
image_dir=opt['gym_image_dir'],
video_info_path = os.path.join(opt['video_info'], 'Full_Annotation.csv')
)
elif opt['dataset'] == 'gymnasticsfeatures':
# feature_dirs should roughly look like:
# /checkpoint/cinjon/spaceofmotion/sep052019/tsn.1024.426x240.12.no-oversample/csv/rgb,/checkpoint/cinjon/spaceofmotion/sep052019/tsn.1024.426x240.12.no-oversample/csv/flow
feature_dirs = opt['feature_dirs'].split(',')
dataset = GymnasticsFeatures(
opt, subset=opt['tem_results_subset'].title(),
feature_dirs=feature_dirs,
video_info_path = os.path.join(opt['video_info'], 'Full_Annotation.csv'))
elif opt['dataset'] == 'thumosfeatures':
feature_dirs = opt['feature_dirs'].split(',')
dataset = ThumosFeatures(opt, subset=opt['tem_results_subset'].title(), feature_dirs=feature_dirs,
video_info_path=os.path.join(opt['video_info'], 'Full_Annotation.csv')
)
elif opt['dataset'] == 'thumosimages':
img_loading_func = get_img_loader(opt)
dataset = ThumosImages(
opt,
subset=opt['tem_results_subset'].title(),
img_loading_func=img_loading_func,
image_dir='/checkpoint/cinjon/thumos/rawframes.TH14_%s_tal.30' % opt['tem_results_subset'],
video_info_path=os.path.join(opt['video_info'], 'Full_Annotation.csv')
)
elif opt['dataset'] == 'activitynet':
representation_module = opt['representation_module']
test_transforms = get_video_transforms(
representation_module, False)
dataset = VideoDataset(opt, test_transforms, subset='full', fraction=1.0)
test_loader = torch.utils.data.DataLoader(
dataset,
batch_size=model.module.batch_size,
shuffle=False,
num_workers=opt['data_workers'],
pin_memory=True,
drop_last=False)
columns = ["action", "start", "end", "frames"]
all_vids = defaultdict(int)
current_video = None
current_start = defaultdict(float)
current_end = defaultdict(float)
current_action = defaultdict(float)
calc_time_list = defaultdict(int)
num_videoframes = opt['num_videoframes']
skip_videoframes = opt['skip_videoframes']
print('About to start enumerating', flush=True)
for test_idx, (index_list, input_data, video_name, snippets) in enumerate(test_loader):
if test_idx == 0:
print('Started enumerating!', flush=True)
# The data should be coming back s.t. consecutive data are from the same video.
# until there is a breakpoint and it starts a new video.
TEM_output = model(input_data).detach().cpu().numpy()
batch_action = TEM_output[:, 0, :]
batch_start = TEM_output[:, 1, :]
batch_end = TEM_output[:, 2, :]
index_list = index_list.numpy()
for batch_idx, full_idx in enumerate(index_list):
item_video = video_name[batch_idx]
all_vids[item_video] += 1
item_snippets = snippets[batch_idx]
if not current_video:
print('First video: ', item_video, flush=True)
current_video = item_video
current_start = defaultdict(float)
current_end = defaultdict(float)
current_action = defaultdict(float)
calc_time_list = defaultdict(int)
elif item_video != current_video:
print('Next video: ', item_video, full_idx, flush=True)
column_frames = sorted(calc_time_list.keys())
column_action = [current_action[k] * 1. / calc_time_list[k] for k in column_frames]
column_start = [current_start[k] * 1. / calc_time_list[k] for k in column_frames]
column_end = [current_end[k] * 1. / calc_time_list[k] for k in column_frames]
video_result = np.stack([column_action, column_start, column_end], axis=1)
column_frames = np.reshape(column_frames, [-1, 1])
video_result = np.concatenate([video_result, column_frames], axis=1)
video_df = pd.DataFrame(video_result, columns=columns)
path = os.path.join(output_dir, '%s.csv' % current_video)
video_df.to_csv(path, index=False)
current_video = item_video
current_start = defaultdict(float)
current_end = defaultdict(float)
current_action = defaultdict(float)
calc_time_list = defaultdict(int)
for snippet_, action_, start_, end_ in zip(
item_snippets, batch_action[batch_idx], batch_start[batch_idx], batch_end[batch_idx]):
frame = snippet_.item()
calc_time_list[frame] += 1
current_action[frame] += action_
current_start[frame] += start_
current_end[frame] += end_
if len(calc_time_list):
column_frames = sorted(calc_time_list.keys())
column_action = [current_action[k] * 1. / calc_time_list[k] for k in column_frames]
column_start = [current_start[k] * 1. / calc_time_list[k] for k in column_frames]
column_end = [current_end[k] * 1. / calc_time_list[k] for k in column_frames]
video_result = np.stack([column_action, column_start, column_end], axis=1)
print(video_result.shape, flush=True)
video_result = np.concatenate([video_result, np.reshape(column_frames, [-1, 1])], axis=1)
video_df = pd.DataFrame(video_result, columns=columns)
path = os.path.join(output_dir, '%s.csv' % current_video)
video_df.to_csv(path, index=False)
print(len(all_vids))
def BSN_inference_PEM(opt):
output_dir = os.path.join(opt['pem_inference_results_dir'], opt['checkpoint_path'].split('/')[-1])
checkpoint_epoch = opt['checkpoint_epoch']
if checkpoint_epoch is not None:
checkpoint_path = os.path.join(opt['checkpoint_path'], 'pem_checkpoint.%d.pth' % checkpoint_epoch)
output_dir = os.path.join(output_dir, 'ckpt.%d' % checkpoint_epoch)
else:
checkpoint_path = os.path.join(opt['checkpoint_path'], 'pem_best.pth')
output_dir = os.path.join(output_dir, 'ckpt.best')
print('Checkpoint path is ', checkpoint_path)
checkpoint = torch.load(checkpoint_path)
base_dict = {
'.'.join(k.split('.')[1:]): v
for k, v in list(checkpoint['state_dict'].items())
}
model = PEM(opt)
model.load_state_dict(base_dict)
model = torch.nn.DataParallel(model).cuda()
model.eval()
if not os.path.exists(output_dir):
os.makedirs(output_dir)
test_loader = torch.utils.data.DataLoader(
ProposalDataSet(opt, subset=opt["pem_inference_subset"]),
batch_size=model.module.batch_size,
shuffle=False,
num_workers=opt['data_workers'],
pin_memory=True,
drop_last=False)
current_video = None
columns = ["xmin", "xmax", "xmin_score", "xmax_score", "iou_score"]
for idx, (index_list, video_feature, video_xmin, video_xmax, video_xmin_score,
video_xmax_score) in enumerate(test_loader):
video_conf = model(video_feature).view(-1).detach().cpu().numpy()
video_xmin = video_xmin.view(-1).cpu().numpy()
video_xmax = video_xmax.view(-1).cpu().numpy()
video_xmin_score = video_xmin_score.view(-1).cpu().numpy()
video_xmax_score = video_xmax_score.view(-1).cpu().numpy()
index_list = index_list.numpy()
for batch_idx, full_idx in enumerate(index_list):
video, frame = test_loader.dataset.indices[full_idx]
if not current_video:
print('First video: ', video, full_idx)
current_video = video
current_data = [[] for _ in range(len(columns))]
elif video != current_video:
print('Changing from video %s to video %s: %d' % (current_video, video, full_idx))
video_result = np.stack(current_data, axis=1)
video_df = pd.DataFrame(video_result, columns=columns)
path = os.path.join(output_dir, '%s.csv' % current_video)
video_df.to_csv(path, index=False)
current_video = video
current_data = [[] for _ in range(len(columns))]
current_data[0].append(video_xmin[batch_idx])
current_data[1].append(video_xmax[batch_idx])
current_data[2].append(video_xmin_score[batch_idx])
current_data[3].append(video_xmax_score[batch_idx])
current_data[4].append(video_conf[batch_idx])
if current_data[0]:
video_result = np.stack(current_data, axis=1)
video_df = pd.DataFrame(video_result, columns=columns)
path = os.path.join(output_dir, '%s.csv' % current_video)
video_df.to_csv(path, index=False)
def main(opt):
np.random.seed(opt['seed'])
torch.manual_seed(opt['seed'])
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
num_gpus = opt['num_gpus']
if opt['module'] == 'TEM':
opt['base_training_lr'] = opt['tem_training_lr']
opt['base_batch_size'] = opt['tem_batch_size']
opt['tem_batch_size'] *= num_gpus
opt['tem_training_lr'] *= num_gpus
elif opt['module'] == 'PEM':
opt['base_training_lr'] = opt['pem_training_lr']
opt['base_batch_size'] = opt['pem_batch_size']
opt['pem_batch_size'] *= num_gpus
opt['pem_training_lr'] *= num_gpus
print(opt, flush=True)
if opt["module"] == "TEM":
if opt["mode"] == "train":
print("TEM training start")
BSN_Train_TEM(opt)
print("TEM training finished")
elif opt["mode"] == "inference":
print("TEM inference start")
BSN_inference_TEM(opt)
print("TEM inference finished")
else:
print("Wrong mode. TEM has two modes: train and inference")
elif opt["module"] == "PGM":
print("PGM: start generate proposals")
PGM_proposal_generation(opt)
print("PGM: finish generate proposals")
print("PGM: start generate BSP feature")
PGM_feature_generation(opt)
print("PGM: finish generate BSP feature")
elif opt["module"] == "PEM":
if opt["mode"] == "train":
print("PEM training start")
BSN_Train_PEM(opt)
print("PEM training finished")
elif opt["mode"] == "inference":
print("PEM inference start")
BSN_inference_PEM(opt)
print("PEM inference finished")
else:
print("Wrong mode. PEM has two modes: train and inference")
elif opt["module"] == "Post_processing":
print("Post processing start")
BSN_post_processing2(opt)
print("Post processing finished")
if opt['do_eval_after_postprocessing']:
evaluation_proposal2(opt)
elif opt["module"] == "Evaluation":
evaluation_proposal2(opt)
print("")
if __name__ == '__main__':
opt = opts.parse_opt()
opt = vars(opt)
opt['start_time'] = time.time()
# When we use jobarray, we need to get the opt.
mode = opt['mode']
if 'jobarray_train' in opt['mode']:
jobid = int(os.getenv('SLURM_ARRAY_TASK_ID'))
if not jobid:
raise
counter, job = tem_jobs.run(find_counter=jobid)
print(counter, job, '\n', opt)
opt.update(job)
print(sorted(opt.items()), flush=True)
print('\n***\n%s\n***\n' % opt['do_feat_conversion'])
if 'debug' in mode:
opt.update({'num_gpus': 2, 'data_workers': 12,
'name': 'dbg', 'counter': 0,
'tem_batch_size': 1, 'do_feat_conversion': True,
# 'gym_image_dir': '/checkpoint/cinjon/spaceofmotion/sep052019/rawframes.426x240.12',
'local_comet_dir': None,
'dataset': 'thumosimages',
'video_info': '/private/home/cinjon/Code/BSN-boundary-sensitive-network.pytorch/data/thumos14_annotations',
'ccc_img_size': 128,
# 'do_random_model': True
})
if 'debugrun' not in mode:
main(opt)