-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcall_linear_function.py
33 lines (22 loc) · 1.28 KB
/
call_linear_function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# call_regression_function.py
from linear_regression import train_polynomial_regression, load_trained_model, predict_price
import pandas as pd
class LinearRegression:
def predict(area, bed, bath, wm, dtcen, hw, ac, pk, se):
# Replace 'your_data.csv' with the actual path to your CSV file
file_path = 'Housing_data_final.csv'
# Replace with the features you want to use
num_vars = ['area', 'bedrooms', 'bathrooms', 'washingmachine','dtcenter', 'hotwater', 'ac', 'parking', 'security']
# Train the model and save it (uncomment the following line if you haven't trained the model yet)
model, poly = train_polynomial_regression(file_path, num_vars, save_model_path='trained_model.pkl')
# Load the trained model and polynomial features
model, poly = load_trained_model(
'trained_model.pkl', 'trained_model_poly.pkl')
# User input for feature values
user_input = [area, bed, bath, wm, dtcen, hw, ac, pk, se]
print(user_input)
# Create a DataFrame for user input
user_df = pd.DataFrame([user_input])
# Predict the price for the user input
predicted_price = predict_price(model, poly, user_df)
return(round(predicted_price))